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*FOREWORD

Going back in time to around 2225 B.C., one finds that the Babylonians
made contributions to the art of computing. Their computing techniques
were based on tables. They made tables of square and cube roots. One of
the remarkable features of their arithmetic is that they did not Insert
the decimal point. So In a certain sense they employed floating point

arithmetic. Since the time of the Babylonians many of the civilizations
that came into being had little need for elaborate computing systems.
This is certainly not the case for people living today. Computers have
become a permanent part of our lives, and electronic digital computers
have taken over a large portion of the work formerly done by human beings.
Up to 1914, the beginning of the first world war, people seldom encountered
astronomical figures in their daily work. Now, reference to such numbers
as millions and billions appear in our daily newspapers. It Is a fact of
life today that we have to take refuge In machinery to handle the elaborate
computations that commonly occur In science and engineering problems. Methods
to treat some of these problems were discussed in papers presented at this
symposlum.

The Seventeenth Army Numerical Analysis and Computers Conference was held
at the NASA Ames Research Center, Moffett Field, California on 20-21
February 1980. The co-hosts of this meeting were NASA Ames Research Center
and the Aeromechanics Laboratory of the Army Aviation Research and Development
Command. Drs. Irving C. Statler and James Wong served as co-chairmen of the
Local Arrangements Committee. The Army Mathematics Steering Committee (AMSC),
sponsor of these conferences, would like to thank these gentlemen and their
assistants for all their efforts In making this an interesting and productive
scientific meeting.

The theme for this year's conference was "Computation of Fluid Flows
Especially Involving Shocks and Discontinuities". The computational
difficulties as well'as analytical treatments arising in these areas lead
to Interesting butitroublesome problems. Some of the papers presented at
this meeting shed light on many of these.,problems. The list of invited
speakers and the title of their addresso-are noted below:

Speakers and Affiliation Title of Address

James Glimm The Accurate Computation of Fluid
The Rockefeller University , Discontinuities by the Random Choice

Method

T. L. Hoist An Implicit Algorithm for Solving the
NASA-Ames Research Center Transonic, Conservative Full Potential

Equation

III

__ __
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Bjorn Engquist Software for Hyperbolic and Parabolic
University of California- Differential Equations
Los Angeles

Jerry S. South, James D. Computational Transonics on a Vector
Keller and Mohamed Hafez Computer

NASA-Ames Research Center

Paul R. Garabedlan Suppression of Shocks on Swept Wings
Courant Institute of
Mathematical Sciences

Members of the AMSC would like to express their appreciation for all the
work expended by the speakers on preparing their papers and then presenting
them at this meeting. most of these papers are being Issued In these
Proceedings as an aid to the scientific community. The AMSC members would
also like to thank the hosts of this conference for providing excellent
classroom facilities as well as projection equipment. These enhanced the
comfort as well as the appreciation of members of the audience for the
scientific Ideas being presented by the speakers.
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A SHOCK TRACKING METHOD FOR HYPERBOLIC SYSTEMS

James Glimm
1,2

3

Dan Marchesin 2 ,6  Oliver McBryan 3,4,5
Eli Isaacson1 Courant Institute

The Rockefeller University New York University
New York, N.Y. 10021 New York, N.Y. 10012

ABSTRACT. We present a method for tracking shock discontinuities in hyper-
bolic systems. We apply the method to the problem of two phase flow in a porous
medium, but the method is general and should be applicable to a wide range of
phenomena including gas dynamics. The method is tested on an exactly soluble
two-dimensional problem and is found to be very accurate. We also study a range
of unstable flow problems with and without heterogeneity of the porous medium.
In the case that the medium is heterogeneous, fingered shock fronts are computed
and tracked. Miscible flows are studied with mobility ratios in the range I to 50.

INTRODUCTION. The random choice method originally developed as a theoreti-
cal tool [I], appears to be the best method for the computation of discontinuous
solutions of nonlinear conservation laws in one space variable [2,3]. It allows
calculations with zero diffusion. The method has been applied successfully to
a number of problems including gas dynamics, chemical reactions (e.g., flame
propagation), petroleum reservoir engineering, and the stability of boats against
capsize.

The use of this method in two dimensions is still a research problem since
numerical experiments yield mixed results. In order to extend the method from
one to two dimensions, Chorin [3] used splitting in the two space directions.
This extension has been applied by Chorin and Sod [4,5] to the flame chemistry
and gas dynamics in an internal combustion engine. However, Colella [6] has observed
that, in general, fluid discontinuities oblique to the computational grid are not
resolved correctly by splitting. A similar phenomenon has been observed in appli-
cations to petroleum reservoir engineering in previous papers of this series [7,81.
A careful choice of computational grid can largely overcome this problem. Complex
and highly fingered solutions are thus resolved 17,8].

The idea of a carefully chosen computational grid can be carried one step fur-
*ther. We present our preliminary results on a two-dimensional method which includes

tracking of the discontinuity surface. Related ideas were previously proposed
and tested for one space dimension [9]. Similar concepts (related to Huyghens
Principle) have been developed and used by Chorin [101.

Unlike earlier shock fitting methods [111, we seek only first order accuracy.
Low order methods are inherently easier to stabilize, and a careful elimination of
the leading errors yields satisfactory results on coarse or moderate sized meshes.
Our method seems fairly general; we believe that its scope is not limited to the
petroleum reservoir applications tested so far.

The equations of two phase flow in porous media have the form

S + div vf(s) = 0, (1)

v = -k(s) grad p, (2)

div v source terms, (3)



where we have neglected the dispersive, or parabolic, term associated with
molecular diffusion and/or capillary pressure. Here s denotes the saturation
(fraction of water or solvent in the total fluid), and p is the pressure in
the fluid. Also, k and f are known functions of saturation (and perhaps
position) which describe the permeability and porosity of the reservoir and the
viscosities of the two incompressible phases flowing in it. We solve the system
(1)-(3) in a square domain with Neumann boundary conditions on p and with the
source terms in (3) given by delta functions of opposite sign at diagonally op-
posite corners of the square. This corresponds to injection of an incompressible
fluid into the square at one corner, with a corresponding outflow at the opposite
corner. For simplicity we will present results here only for the case of mis-
cible displacement. We will take the corresponding reservoir functions to be:

f(s) = s,

k(s) = (s + -I14 (l-s))4,

where vi is the ratio of the viscosity of oil to the viscosity of solvent.
Actually the absence of diffusion and the choice of Cauchy data imply that
s = 0 and s = 1, at each point, and so the particular phenomenological function
k(s) chosen above, which specifies the viscosity of a mixture of two fluids in
terms of the viscosities and proportions of the components, does not enter into
the calculations. Similar results have been obtained for immiscible flows, with
f(s) a function with one point of inflection between 0 and 1.

As in 19], the discontinuous solution s(x,y,t) of the hyperbolic conserva-
tion law is described at time t by

( a (x,y,t) if x,y is ahead of the front

s(x,y,t) =

b(x,y,t) if x,y is behind the front.

We imagine the functions sa and sb extended continuously across the front to
their unphysical regions, making s double valued. Thus the front may be thought

of as a cut in a Riemann surface joining the physical regions of sa and sb. Cauchy
data are then specified at time 0 by setting s = 0 everywhere, and also sb = 0
except in a small region surrounding the injectioR well where sb = 1. The shock
front is initialized at time zero by specifying a set of (ordered) points on it. The
front is defined to be the piecewise linear curve which connects the points in order.

In order to update the numerical solution at each time step, we proceed as
follows:

1. Advance the Front: This consists of two parts. First, we find the new
position of the front using the ordinary differential equations describing the charac-
teristics of the hyperbolic equation. Second, we modify s and sh in a neighbor-
hood of the discontinuity in order to pass any waves generated by he advancing front.

2
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These waves typically arise fron non-convex conservation laws. (For a problem in-
volving more state variables, we believe that waves crossing the shock can, and
must, be passed between sa and sb at this stage by a similar method.) To modify
s and sb we solve one-dimensional Riemann problems along the characteristics.
The modification of sa and s. does not involve dynamical motion of these waves
-- other than the motion of tIe front itself.

2. Extrapolate sa and sb : Both sa and s are extended continuously

across the new position of the front to their unphysical regions.

3. Redistribute the Points Describing the Front: This is done to ensure
that the portions of high curvature are resolved and that the spacing of the points
is fairly uniform.

4. Update sa and Sb: We use the splitting version of the random choice

method, even though any convenient first order method could be employed.

5. Update the Elliptic Equation: See [8]. We still use the rectangular
grid in a neighborhood of the front. We believe that this is the cause of the
leading errors which remain. Refining the mesh near the front should eliminate
these errors.

RESULTS. In order to test the validity of our tracking methods we have applied
them to a problem with a known exact solution. The equations (1) - (3) are exactly
solvable in the case that the velocity equation is independent of the saturation,
i.e. if , - 1. As has been pointed out by Albright, Concus and Proskurowski [12],
the equations may be transformed to a new coordinate system in which the flow is
essentially one-dimensional. In Figure 1 we present the results of our computations
for this problem on a 20x20 grid. We have superimposed the exact solution computed
at the same times. Figure 1 corresponds to a miscible displacement problem with
f(s) = s. Thus the fluid consists of either pure solvent or pure oil with no rare-
faction waves, so plotting the front at a given time describes the whole solution.
Similar results apply to the more general case where f(s) is a function with one
point of inflection. The agreement with the exact solution is in general very good
except that in the area of the production well the computed solution moves somewhat
too slowly. We have not attempted to use the known asymptotic form of the velocities
in this region, which would presumably give a better solution. In Table I we com-
pare the total area behind the front at several times for the exact and computed
solutions on a 20x20 grid. There is agreement to within a few percent.

Table I: Comparison of Exact and Computed Solutions

Time Exact Solvent Present Computed Solvent Present

.0 .0 .0

.500 .129 .125

.806 .207 .202
1.035 .265 .259
1.208 .309 .302
1.505 .384 .376
2.016 .513 .504
2.349 .596 .587
2.884 .729 .721

3



The computation described above is principally a test of the front tracking
method because, since k(s) =1, the coefficients of the elliptic equation are
constant. Thus no errors are introduced in the elliptic step due to lack of mesh
refinement near the front.

We have also applied our front tracking method to problems where the ellip-
tic equation is not trivial. In general, the permeability function k(s) changes
by a factor of 1j in crossing the front. Therefore the errors introduced dur-
ing the elliptic step increase with w . For large ii, we believe that a more
accurate solution of the elliptic problem near the front would improve the method.
For simplicity, we again discuss only the case of miscible displacment. We pre-
sent examples where the oil to solvent viscosity ratio Uj is 2,5 and 50, and
in the latter case we also study the case where the permeability function is gi-
ven an explicit spatial dependence.

Figure 2 shows successive fronts for two different grids superimposed, when
the oil-solvent viscosity ratio is i1 = 2. The agreement between the results
for the two grids is good. Fingered solutions for a heterogeneous reservoir with
i = 2 were obtained by an earlier method 18]. Figure 3 shows that tracking
allows the computation of the mathematical solution in the extreme unstable re-
gime of large viscosity ratios - here P = 50. This region was beyond the reach
of the methods presented earlier in [8]. The viscosity ratio in Figure 4 is the
same as that in Figure 3, but the permeability has been given an x-y dependence;
specifically, it has a log-normal distribution. Figure 5 is similar, except that
the length scale of the x-y dependence in the log-normal distribution has been
increased. In both cases, fingering of the solution is observed. Figures 6(a) -
6(g) depict the evolution of fingers and of the associated velocity fields in the
heterogeneous reservoir of Figure 5.

In Table II we present details of the amount of oil recovered at breakthrough
in various cases, as well as some comparisons to experiment [13].

Table II: Oil Recovery at Breakthrough - Miscible Displacement.

1 2 5

Experiment .667 .59 .46
lOxlO grid .752 .657 .548
20x20 grid .731 .656 .503
Exact Solution .723 - -

4
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Figure 1

MIsCibl, displacement. with equal viscosit le~i The exact solutIon and computed
solution from a 2Ox2O grid with front tracking are ilotted at equal times. The computed

solution has moved faster along the boundary and alower at the tip.



Fi uLr(. 2

Miscible distn1acernent with oil solvert viscositv ratio v is=2.

The Solution is co;--iouted with front trackin- and olottei sit successive

time Intervals. for a 10 x 10 and 20 x 20 Srid. The coarse gril (10 x 10)

solution i9s 5icrhtly In advance of the fine pnrid solution at each time sten.

(This solution Is unstable and is nct duplicated ex-oerinerntall1.)



---------

MISCIble disnlace--ent .;Ith oil s:)1v,.nt, viscOsjt- ratio w /us-O
COM)Ute with f~ront traclin, an-I -a :10 (7eneous reservoir an a 10 x 10
vri d.



Fiture i

isicible displacement; solvent displacing oil, with a viscosity ratio IjN 0 The
solution was computed on a 25x25 grid with front tracking. The reservoir was heterogeneous

with log permeability normally distributed with a variance of .5



Hiscibi. dieplacemmant. The lonkitb scale In the heterogeneity WAS increased from that of Figure
4. 3~lvIda1 tim steps wuith velocity field a:. given In Figure 6.
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IMPLICIT POTENTIAL METHODS FOR THE SOLUTION OF TRANSONIC ROTOR FLOWS

F. X. Caradonna
Aeromechanics Laboratory

U.S. Army Research and Technology Laboratories (AVRADCOM)
Ames Research Center, Moffett Field, California 94035

J. L. Steger

Flow Simulations Inc.
Sunnyvale, California

ABSTRACT. Two implicit potential methods capable of solving transonic
rotor flow problems are developed. One method is a small disturbance tech-
nique with a general unsteady applicability. The other method is an unsteady
full potential technique which maintains conservation by an appropriate
expansion of the density. The two methods are compared for various test com-
putations. Three-dimensional computations are also made and compared to actual
rotor pressure data.

1. INTRODUCTION. Transonic flow is a common occurrence on modern heli-
copter rotors and often defines the performance limits of these machines. This
flow can be quite complex, as the blade in forward flight encounters a rapidly
varying Mach number, incidence, and sweep angle, and must often interact with
various portions of its own wake. In addition, strong shocks can result in a
high-speed stall. Even in the absence of separation effects, the shock motion
and blade loadings are difficult to predict under these conditions. These
problems are notoriously difficult to study experimentally and the numerical
simulation of rotor flows becomes quite attractive. The potential flow approx-
imation is the simplest model capable of simulating high-speed rotor flows.
This paper describes two potential methods for simulating these flows - one,
a small disturbance and the other a full potential method.

2. SMALL DISTURBANCE METHOD. The small disturbance equation is derived
from the mass conservation and Bernoulli's equation,

ap+ v (p) 0 (1)
at

-J. 1 /Y-1

P Y 0 U(2)

To derive a simplified equation suitable for high-speed rotor use, the
above equations are recast in a blade fixed coordinate system. The resulting
equation is made dimensionless, scaled, and the transonic small disturbance
assumption [(1 - M2)/t2/3 - 0(1)] is imposed (see ref. I for a detailed discus-
sion of the derivation). The resulting equation written in conservation form
is

A* + B Fx + fzz + Cfyy + Dfxy (3)
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where

2/3= */ Rcr z /

A -
2 CZ2/T2

/ s

B - 2M 2f/T2/
$

D Bg

f -y + Cosi

g = xc + U sin

C - C2/T2/3

F 1- 2 $ X - M2[(! Y 2 fo + (Y - O)O Ox' chordwise flux term

1- R/V, rotor advance ratio

M - SR/a., tip Mach number

e c/R, inverse of blade aspect ratio

* 9t, blade azimuth

T - blade thickness ratio

and x - i/c, z - iTl/2/c, and y - y/R (barred quantities are dimensional
quantities). Note that, in the above equations, the inverse aspect ratio plays
the part of a reduced frequency.

Equation (3) will be solved by an implicit finite difference method.
Before proceeding to discretize Eq. (3), it is first necessary to time-
linearize the nonlinear flux term, F, to avoid a costly iteration process at
each time step. That is, let

n--i nn-i- n 4F -F n+1 )) n (..+l n)Vox) x +x * + (4) *

This time-linearized flux is differenced at each midcell of the computational
grid as

-'-6Fn  n . Fn n nn  +

n+1 n a( tF. *n ni
1+1/2 1+ 1 /2 + ) i x V n

(5)

_n 2nFn i - f2M2 61i M2 + 1 6  + e( -

F+/ 12/3 )fA2.i+i/2 " - -~2 8x +20
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where the difference 6 is defined in terms of the shift operator as

6 
M -E - I

and

n 1 _ f2M 2  M2(_( l)f6i0in  M2(y -_ l)_ nn-1

T2/3 Ax M(

3F\n M - Iii() Ax

To stably difference Fx in both supersonic and subsonic regions, Murman's
conservative switched scheme is used (ref. 2), that is

Fx  DxF T' [ci(Fi+//i - F, (I -, - Fi, (6)

where

i ' Vi > 0

0 V i < 0

and

1 - M2f2  M 2 _MM2/2 M2 (y + I) x  
2 (y -I)C

Solutions that fully implement all the unsteady terms in Eq. (3) have
been obtained in two dimensions. The numerical procedure for the two-
dimensional case is the following alternating direction (ADI) scheme:

2x sweep: B (n ) DxF + jj'i,j

A n B n+1 - - - .n+1-ep: = 6  , + 7--'"6 - i)J 6J Joi,Jswe A* n ni,j *~Ax i . i J )i
+1/2 -1/2

where cm- Em1 - Em.1 and F in the x-sweep is defined using * in
U+1.

place of 0

The boundary conditions employed (fig. 1) are undisturbed flow upstream
(0 - 0), an undisturbed flow or flat wall condition (0 - 0 or z 0 0) on the
lateral boudaries, and zero pressure disturbance on the downstream boundary
[C -2f6 2 19 (Ox + 0.) - 0]. The airfoil tangency condition, Oz - dZs/dx
(Z5(x) describes the airfoil profile), is applied on the airfoil mean surface,
z - 0. An additional boundary is the contact discontinuity caused by the
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downstream convection of vorticity from Lir trailing edge. Across this bound-

ary there is a discontinuity in potential, f f [p], described by

rx + r4 ' (8)

which is obtained from pressure continuity. In addition there is a discontin-
uity in ozz across the wake. This is seen by applying Eq. (3) (in its non-
conservative, two-dimensional form) across the wake to obtain

Ar + Bfrx = vr +[ .
tpt x~ xx zz

Substituting Eq. (8) into this expression yields

[OZZ I = (A - B -v)rxx (9)

A Taylor expansion gives the differencing which must account for these discon-
tinuities:

a r +1

yy Ay ± I. (10)

To obtain this expression, the wake is assumed to be midway between two mesh
points.

Three-dimensional nonlifting solutions to Eq. (3) in its low-frequency
form (i.e., all unsteady terms except Oxo are ignored) have also been
obtained. The numerical procedure is a straightforward extension of the two-
dimensional case, that is,

B 16jn k6kn
x sweep:- 6 -+)i k

AxAx sepi-jk= DxF + C A iJk Az 2 *i,j,k

+ D
+4AxAy i+i,k+i - i-i,k+i

n
+  

J

B 6k6k q nz sweep: - 6(0- - ( i,Jk

B Cn+ = C ( n+1 n
y sweep: -x6 i  -)JA Ay2  ( -4 )-,Jk

3. FULL POTENTIAL METHOD. The governing equations (1) and (2) can also
be solved without making use of a small disturbance assumption. Because no
terms are dropped, Eqs. (1) and (2) are frequently referred to as the unsteady
full potential equations. The full potential equations surpass the small
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disturbance equations in that they can account for full geometry effects and
treat a more complete range of flow-field variations.

In this section a numerical procedure for the Unsteady full potential
equations is developed. At the current state of this development, the inertial
reference frame rather than blade fixed frame is retained in Eqs. (1) and (2)
and the equations are treated in only two dimensions. Although the full poten-
tial equations are solved, a thin airfoil boundary condition is presently
employed for simplicity. We remark that a similar numerical algorithm was
independently derived by Goorjian (ref. 3).

a) Governing Equations. Transformations can be introduced into Eqs. (1)
and (2) both to simplify the treatment of boundary conditions and to cluster
grid points to flow-field action regions. Since thin airfoil boundary condi-
tions will be used, the transformation need only serve to cluster grid points.
With transformation, E - V(x), n = n(z), Eqs. (1) and (2) take the form

9 + _L P t 2 - + _ _ P 71 2 ( 12 a )
at 2 3E 6a ay 0 -

p- - (y - 1) -- + x2 + n 2 2 1/_1 (12b)

where p - 5/p., u = U/U, etc., and J - xnz = 1/(xtz,) and where a uniform

nonzero flow is specified at infinity, causing an appropriate change to the
Bernoulli equation.

For all practical purposes, far-field boundary conditions and circulation
Jump conditions across the cut are identical to those previously described.

b) Conservative Form. Equation (1) is equivalent to a second-degree
wave equation since p - P() and thus

ap 2-Y I a +  a _ +  z . - (13)

at asDat +7 s .+ ax at (3

where ap/aO is a noncommuting differential operation as determined from the
Bernoulli equation. The spatial terms can be expanded in a similar way, e.g.,

ax(POx) = oxx + Ox

and with rearrangement, Eq. (1) is written as

Ott + 20x xt + 2ozozt (a2 _ 0 x 2  - 2t0Dxz + (a2  V y 2) zz (14)

where a - 1Y1/M2 (in the chosen dimensionless variables).

Equation (14) is useful in displaying the type of Eqs. (1) and (2) but in
its nonconservative form it is inappropriate for "shock-capturing" (it does
not give the weak solutions that model the Rankine-Hugoniot solutions). To
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maintain the conservation-law form of Eq. (1) and yet still expose 4P as the
true dependent variable, the following Taylor series is introduced into the
ap/3t term

P +11P -o) (15)
0

where o represents a nearby known state or solution. Use of Eq. (15) allows
Eq. (12a) to be rewritten as

I+ 2 + z )(4-¢o] = 0 G(2)+a (nZn)+ To (16)

where - p 2-Y and implies division by J, i.e., p = p/J.

c) Numerical Algorithm. An implicit approximately factored numerical

algorithm can be con'tructed for Eq. (16) in a similar way as for the small
disturbance equation. The spatial difference operators are treated in much
the same manner as they are in the steady-state relaxation algorithms
(refs. 4-7). Define the operators as

26) [Pi+l Pi

(x264) 1+1/2 - )

(1 + e)p i + (1 - e)
+ +2 -1+1

(1 1~ (i)  2
/2

+ l ( I + O)Pi- I + (l O)P i-2(i -i-

+ )2 1  (17a)

(r12' Pj+1 +
gqn za = n J /+1/2 2 (J.1 - i

- 31. 2 Pi -PijI ) (17b)

Here AE = An - 1 and only the varying indices are indicated. The parameter
e - i or 2 for first- or second-order spatial accuracy in supersonic regions.
The switching parameter v is defined in a way similar to reference 5 as

v [1 - (p/p*) 21c 1 < c < 10

V 0 if v < 0, i.e., subsonic (18)

v 1 if v - 1, i.e., supersonic
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The parameter v can be set to 1 throughout, but accuracy will be impaired
unless 0 is also set to 2. The operators (17a) and (17b) assume that the
flow will be supersonic only in the positive x-direction. The density is
found from the Bernoulli equation with (A - An 1 ):

a. +16
2

" J+ 1 - J- 1

n - 2 6- n

j+ 2 ) ni

n+ ():)1at TO4 n+

The metrics Cx and nz are obtained from

2xi+1 xi-1

2.

j+y _ z-_

while the term (Cx2 /J)i+4/2 in Eq. (17a) is formed either as

40 (x /Ji+1 +(x /Ji

- 2 (19a)\_ Ji+1/2

or

/J) + (tx/J)

( )i+1/ 2(xJ+-1x/) (19b)

The terms (Ex2/J)1-1/2, (Tz2/J)j+1/2,.and (rIz2/J)j-1/2 receive similar treat-
ment. If Eq. (19a) is used, it is essential to add -6&(p.tx2 /J)6Wo.. to the

right-hand side of Eq. (16) to subtract out a numerical truncation error due
to incomplete metric cancellation.

Using these operators, Eq. (16) is put in the approximately factored form
(see ref. 8 for more details).
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+ At(nz 2)¢Pn6 - A t h6 -- n xz l - J n n j

+ At 2)--- ) -L + (x )n (  n n+1  n-l

2 n

+ - Ia n-. p- n6 n (,- )

,t n  n n1) n

+ - + hZ (20)0" n- I i - i n I-

This equation has the form

L nL(n+ _ )= R (21)

and it is implemented as an algorithm as

Ln + * R

L M¢n  AO* h (22)

n+1 n + n

The algorithm Eq. (22) requires only a series of scalar tridiagonal
inversions and it is therefore very efficiently implemented. Computer storage

equivalent to four levels of have to be supplied with p computed from
the Bernoulli equation as needed.

4. RESULTS. A first assessment of the full potential method is to com-
pare with previous steady solutions. This is done in Fig. 2 for the case of a
circular arc profile at a small angle of attack. The particular small distur-
bance solution shown in this case is nonconservative and this is the cause of
the discrepancy In shock location. Basically, the two numerical solutions

compare well. The differences from the experimental pressures are undoubtedly
due to viscous effects. For this particular computation, the switched density
expression was used (Eq. (17a)). As previously mentioned, an upwind unswitched
expression can be used (i.e., v - I in Eq. (17a)) if a higher order difference
is used. This is shown in figure 3 which compares the unswitched full poten-
tial result with the same case as in figure 2. It is seen that the upwind
scheme duplicates the switched density result. The overshoot in the switched
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result is not inherent in switching, but probably indicates that modification
of the v expression is required.

A good unsteady solution to check out the full potential method is the
slowly thickening and thinning airfoil. In this case we have a circular arc
profile whose thickness T varies as

T - 0.1(10 - 15t + 6t) 3 , 0 : t < 15, t = t/15

DI4T - 0.1[1 - (10 - 15t + 6t)t 31 , 15 t S 30 , =(t/15) - I

The comparison in figure 4 of midchord pressure with the result of reference 9
is quite good. For this result, however, the present full potential method
utilizes more unsteady terms than are absolutely required.

A case that more fully exercises the unsteady terms is the calculation of
an impulsively plunged flat plate. This is a good test case because there are
analytical results with which to compare. Figures 5(a)-5(c) compare both the
present small disturbance and full potential results with the linear analyti-
cal results of reference 10. It is seen here that both the full potential and
small disturbance cases compare well with the linear result. This is an impor-
tant result as it shows that both methods are predicting both upstream and
downstream propagating waves reasonably well. In contrast, the previous case
(the thickening-thinning airfoil) demonstrates only the ability to handle
upstream propagating waves.

The final computation is one that demonstrates the ability of potential
methods to predict real transonic rotor flows - a computation of the flow on
an advancing, nonlifting rotor using the three-dimensional small disturbance
algorithm (Eq. (11)). The experiment in which these data were generated and
some corresponding two-dimensional computations are described in reference 9.
The model in question was a nearly rectangular nonlifting helicopter rotor.
The unsteadiness of this flow is mainly due to the variation in the chordwise
Mach number component which the blade sees. The reduced frequency of this
variation is of the order of the inverse aspect ratio and is quite low.Therefore, it is appropriate to retain only the 0x term in Eq. (3), which
amounts to assuming an infinite downstream propagation rate. Figures 6 and 7

show the numerical and experimentally obtained blade pressure distributions at
azimuths of 600 and 1200, respectively. It is seen here that the small dis-
turbance method predicts the pressure variation and shock motion quite well.
It is of interest that the 1200 case has much stronger shocks than the 600
case. This is indicative of the basic flow unsteadiness, as the two cases
would be identical in a steady computation at the inboard stations where
crossflow effects are small. In fact, this same sort of asymmetry was mani-
fest in the thickening-thinning airfoil solution in figure 6.

5. CONCLUDING REMARKS. Potential methods seem to hold considerable
promise for predicting the transonic flow on an advancing rotor blade. Two
such methods - a small disturbance and a full potential method - are described
here. Of the two methods, the small disturbance is the best developed, mainly
because of history, smaller storage requirements, and simple geometry. Small
disturbance results show excellent agreement with three-dimensional, nonlifting
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rotor data. However, the limitations of this approximation, especially at
lower Mach numbers and high lift, are well known. Therefore, we are develop-
ing an implicit full potential method that is fully conservative. At present
the method is developed to the point of accurately predicting two-dimensional

highly unsteady flows using linearized boundaries. It is clear that the
method works well and will ultimately be developed into a full three-
dimensional rotor flow code.
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Figure 6.- Transonic rotor pressure distribution.
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Sharp Discontinuity Tracking Applied

To Explosion Problems*

Gregory R. Shubin

Applied Mathematics Branch (R44)
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Silver Spring, Maryland 20910

February, 1980

0. Abstract

Explosion dynamics problems involve the propagation and interaction of
shocks and contact discontinuities, usually in several space dimensions.
Since standard finite difference methods which smear these discontinuities
do not give sufficiently accurate results, a sharp discontinuity tracking
method which explicitly follows the surfaces of discontinuity has been
developed. This method is applied to explosion problems in one and two
space dimensions.

*This material has appeared as NSWC/WOL TR 78-186
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1. INTRODUCTION

Many problems of interest involve the propagation of blast waves arising from
explosions, and the interaction of these waves with boundaries. In principle, a
computational solution of this fluid dynamics problem should provide a cost-

effective alternative to expensive physical experimentation. In reality, the

computational problem is an extremely difficult one which involves the propagation

and interaction of various discontinuities, both shock waves and contact disconti-
nuities (often, interfaces between different materials), in more than one space

dimension. It is of practical interest to get accurate results for the shock

pressure profile (especially the peak pressure) and also to correctly predict the

motion of material interfaces which significantly affect the flow field.

Most finite difference methods currently in use (both Lagrangian and

Eulerian) for these explosion problems use either explicit or implicit artificial

viscosity to spread or smear shocks over several computational mesh points. This

falsifies the peak shock pressure and impulse. To obtain sufficient accuracy, it

is necessary to use a very large number of mesh points, which becomes prohibitive

for complicated multidimensional problems. While pure Lagrangian methods can

follow material interfaces well and can allow areas of fine resolution to move

with the fluid, they ultimately tend to break down because severe material

deformation leads to distorted computational meshes. Pure Eulerian methods can

handle distortion and internal slip but produce diffusion of material interfaces

and do not readily allow localized resolution.

This research is aimed at developing a numerical method called "sharp

discontinuity tracking" which will follow shocks and contact discontinuities
accurately without introducing smearing or computational oscillations. While the

method is specifically designed to handle the problem of determining the pressure
history under water due to a chemical explosion in air above a water surface

(herein called the "EAAW problem"), it should be applicable to other explosion
dynamics problems of interest. This method allows for adequate computational

t resolution of physically small or shrinking regions which contain important

physical phenomena, such as the air region between the expanding explosive gases

and the water surface in the EAAW problem just described.

The present method is based partly on the work of Solomon et al. [References

1,2] who developed a computational method for predicting the three-dimensional

steady supersonic flow field over reentry vehicles at angles of attack. Since such
a steady flow problem is hyperbolic with the axial direction being a time-like
coordinate, it is similar to the two-dimensional axisymmetric unsteady flow case

considered here.

14
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2. COMPUTATI ONAL METHOD

A. OVERVIEW OF METHOD. The method of sharp discontinuity tracking is a
finite difference method for obtaining approximate solutions of the nonlinear
system of hyperbolic conservation laws (partial differential-equations) which
describe inviscid fluid dynamics. The proposed methodology is distinct from the
usual finite difference methods since it defines explicit surfaces in the
computational field which represent physical discontinuities, both shock waves
and contact discontinuities. A special system of finite difference equations
governs the motion of these surfaces and exactly enforces the physical boundary
conditions which must hold across the discontinuities. No finite differences
are taken across these surfaces. Since the discontinuities are perfectly sharp,
interactions can be treated by locally exact methods. In practice it proves
useful to perform a time-dependent coordinate transformation to obtain a regular
mesh in which the contact surfaces are always coordinate lines and the shocks

"float" through the Eulerian mesh. The regions of relatively smooth flow between
the discontinuities can be accurately handled by standard second order accurate
finite difference methods.

The surfaces of discontinuity represent physical shock waves and contact
discontinuities. The motion of these surfaces is determined by the physical
conditions which must hold across the surfaces and is also influenced by the
surrounding fluids. The correct conditions linking the values of flow variables
on either side of the surfaces are the Rankine-Hugoniot jump conditions for a
shock, and the equality of pressure and normal particle velocity for a contact
discontinuity. The surrounding fluid can influence the surface only'in certain
ways determined by the theory of characteristics for a system of hyperbolic

partial differential equations. By selecting appropriate admissible character-
istic compatibility relations and combining them with the correct physical
boundary conditions, one obtains a system of differential equations which governs

* the motion of the surface and gives the flow variables on either side as a
*function of time. These differential equations are then discretized to give a

system of finite difference equations for advancing the discontinuity in time.

The surfaces of discontinuity move relative to each other and will in
general collide and interact. Where they meet they are locally plane and the
values of flow variables on either side are explicitly known. The interaction
then reduces to an algebraic problem of finding a configuration of transmitted
and reflected discontinuities which satisfy all of the necessary conditions in
the infinitesimal neighborhood surrounding the point of intersection. This

locally exact solution is explicitly inserted into the computed flow field.
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B. GOVERNING EQUATIONS FOR AXISYMMETRIC FLOW

The equations of inviscid unsteady flow are written in spherical coordinates
r,e,# (Figure 1) for an axisymmetric problem (9/3 - 0, r _ 0, 0 6 B _ n) as the
following system of weak conservation laws:

U + F aGa-4- +  + + + H 0 (1)
3t 3r aU

where

U r sine Qu) F - r sine 8 (~+p 2\P; 0uv ,
P~u)u (o E-p)/

(2)

G= r sinO (0 ) H (2=v)sn
\v (E+p)) 0

Here P is the density, u is the r-component of velocity, v is the B-component of
velocity, e is the specific internal energy, and E = e + (u2+v2)/2 is the total
specific energy. The pressure p is given by an equation of state for each fluid
(see References 5,8 for equations of state for pentolite, air, and water) in the
form

p - p(p,e) (3)

A "main" shock wave is defined by the surface r = s(e,t) and contact dis-
continuities are given as r = ci(8,t), i = 1,2,-..I. For the explosion in air
above water, I = 2 and cI is the contact surface separating the explosive gas
products from air, while c2 is the air-water surface (plus an appropriate closure
for large 0, see Figure 1). The main shock is, in general, partially in air and
partially in water. These major discontinuities s and ci are unknowns whose
position and velocity is known at time = 0 and which must be advanced in time by
the solution procedure. "Secondary" shocks and contact discontinuities deemed to
be of less physical importance are allowed to be smeared out by the conservative
finite difference scheme used for interior mesh points, as discussed below.
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It is noted that the choice of the form of equations system (1) eliminates
the need to specify boundary conditions on r - 0 and on the symmetry boundaries
B 0, since the unknown U is identically zero there. This is consistent with
the fact that by symmetry, u - v - 0 at r - 0 and v = 0 on 8 - 0,w. However,
as formulated here, the values of the primitive flow variables must be found on
8 - 0,n in order to implement the shock and contact surface treatments. This is
accomplished by solving a special set of equations which hold only on a 0 0 and
e - v; these equations are obtained by dividing (1) by sine and using L'Hopital's
rule to evaluate the limits 6 - O,r.

C. COMPUTATIONAL PROCEDURE

The computational field is viewed as being composed of regions of relatively
smooth flow which are separated from each other by explicit discontinuities--either
shocks or contact discontinuities. It is convenient to employ a time dependent
transformation which always maps the contact discontinuities ci, which are single-
valued, piecewise smooth curves in physical space, into coordinate lines in
computational space (Figure 1). It will be seen that, for the explosion in air
above water (EAAW), this has the advantage of preserving computational resolution
in the air region cI f r f c2, even if C2 - cI becomes small.

The transformation from physical to computational space is given generally as

X = X(r,B,t)
Y = Y(e) (4)
T= t

and the governing partial differential equations (1) are expressed in the trans-
formed computational space (X,Y,T) as

3T aX a(

where

X tU + XrF + XBG

G- Y6G (6)

axt ax faxe aye)
- x ax\ax F -

Once a specific choice of transformation (4) is made, the quantities Xt,Xr,Xe,Ye,
and their partial derivatives are given explicitly in terms qf s(6,t), ci(e,t),
and their partial derivatives.

43

_____ ___ _ _ _ _ _



For the EAAW problem, convenient choices of the transformation X are:

gas reg~ion: X = .......

0 * r c1 (O,t) 
c(1 0, t)

air region: X = 1 + (kl1) r------,- (7)ClI(6,t) _< r f< c2(0 ,t0 12( 6 t)-c 1(et)

water region: X = k1+k2 [r-c 2(0,t)1
c2 (0,t) f r

so that r - cl(8,t) is mapped into X 1, and r = c2 (O,t) is mapped into X k1 .
Then for a given number of mesh points in the X-direction in the explosive gas
region, the choices of kI and k 2 give the relative computational resolution in
the air and water regions respectively. A convenient choice of the transformation
Y is (in inverted form)

where w is a parameter which gives graded resolution in physical space with
finest resolution near 0 - 0 if w > 1.

A mesh function U is defined on the uniform computational mesh
mnj

for X = mAX m - 0,l,2,---,M(j)
j=1,2,3 Y - nAY n - 0,1,2,''-,N

T = To+kAT k - 0,1,2,''"

where m(l)AX = 1, m(2)AX = k- 1, NAY = 1, and j=1,2,3 for the regions of
explosive gas, air, and water respectively (Figure 1). The main shock defined by
r - s(e,t) in physical space "floats" through the uniform mesh and is represented
by special mesh points which are located on Y = constant lines.

It is assumed that initial data (see, e.g., Reference 8) is given T = To for
P,u,v,e,p,ci(O,to) and s(e,to) on the spatial mesh defined above. In order to
advance the solution to To + AT, procedures must be given for

(i) "interior" points (1 _ m _< M(J) - 1, 1 1' n - N - 1)

(ii) points on the symmetry boundaries 6 = O,n (n - 0,N)

(iii) shock points

(iv) contact discontinuity points (j - 1, m - M(l); J - 2, m - 1 and
m- M(2); J - 3, m- 1)

(v) interactions between a shock and P contact discontinuity
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The solution at all points is advanced in time using finite difference predictor-
corrector methods. For the interior points (i), the equations (5) are discretized
and standard HacCormack [Reference 9] schemes (in this case, predictor forward
differencing and corrector backward differencing in both X and Y) are used to
advance the conservation vector U. The primary flow variables are easily
recovered from the definition of U and the equations of state. Points on the
symmetry planes (ii) are advanced in the same way, only the governing equations
must be modified (as described above) before discretization. The procedures for
advancing the remaining points, namely those at the shock, the contact discon-

tinuities, and the points of discontinuity interaction, are described later.

The MacCormack finite difference scheme was chosen for its second order

accuracy and its good "shock-capturing" properties (ability to reasonably smear

out a shock over several mesh points), but any other predictor-corrector method

could be used. For very strong captured shocks, such as the secondary shock

which implodes on the origin in c- spherical explosion, it is necessary to imple-

ment a computational "filter" (similar to that in Reference 10) to limit captured

shock steepening. Any other shock capturing "improvement" may also be included.

Computational stability demands that AT be suitably restricted. A necessary
(but not sufficient [Reference 11]) criterion can be derived using a geometric
argument which requires that the domain of dependence of the "linearized" differen-

tial equations be contained in the domain of dependence of the finite difference
equations. When this criterion is used with a multiplicative safety factor of .9,
no instability is observed in actual computation.

D. ADVANCING THE MAIN SHOCK AND CONTACT DISCONTINUITIES

A crucial requirement of the present computational method is to provide an
appropriate numerical treatment of the explicit surfaces which represent shocks or
contact discontinuities. The known physical boundary conditions, namely the
Rankine-Hugoniot jump conditions and the equality of tangential velocity across a
shock, and the equality of pressure and normal velocity across a contact dis-
continuity, must hold exactly. However, these boundary conditions alone are not
sufficient to provide equations for advancing the surface in time, but must be
considered along with appropriate information obtained from the governing PDE
system (1). From the theory of characteristics for hyperbolic systems of PDE's,
one can derive characteristic compatability conditions (see Reference 12) which
are associated with certain bicharacteristic directions. Admissible characteristic

relations, that is, those ass-ciated with directions pointing away from the
surface in the negative time direction, effectively determine the influence of the
surrounding fluid upon the discontinuity. In the manner introduced by Kentzer
feference 13) and used by Solomon et al. (References 1, 2), it is possible to

combine the physical boundary conditions with the correct characteristic compati-
bility relations to obtain a system of PDE's which hold only on the surface. A
finite difference approximation of these equations then provides the algorithm for
advancing the surface, and the flow properties on either side, in time.
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(i) CONTACT DISCONTINUITY. A contact discontinuity (c.d.) r = c(8,t) is a
material surface for the fluids on either side of the discontinuity. Hence

cOct - u +--,Vc - 0 (8)

holds at a c.d. (subscripts te indicate partial derivatives). There are three
admissable characteristic compatability relations which hold on each side (left
and right) of the surface. Two relations correspond to a streamline and one to
the Mach conoid. These compatability relations are of the form

-AT I T R1 (9)

-(Dq )-u = R (10)

A2T + A L + v2 = R3 I2T 3 1- T \c j 3 (1

It is emphasized that (9)-(11) hold on each side of the surface, and hence
represent six equations. R1 and R2 contain derivatives interior to the surface
(Y-derivatives) and undifferentiated quantities evaluated at the surface, while
R3 contains additionally X-derivatives. A1, A2 , and A3 contain only undifferenti-2 c2
ated quantities, and D 1 + . The actual A. and R are given in Appendix A.
The pressure p and the cnormal velocity

q -- are constant across the c.d., while the density P, energy e, and
%orm =D

tangential velocity qtang can sustain jumps.

In addition to the characteristic compatability relations we have the equation

aT c As] (12)

which expresses, through the chain rule, the equality of cross partials
c8  act

- - Also

2p- a+ Ka e (13)
aT 1 T 2 3T

holds on each side, where KI - and P c - are given by the appropriate

1 1Pe 2 \e/ p
equations of state. A procedure is now clear for advancing the c.d., since
equations (9)-(X3) provide nine equations in the nine unknowns which are (the
time derivatives of) ct ,pf,e,q tan]Left',e,qtang]Right.
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(ii) SHOCK. A shock r s(e,t) is a surface across which the Rankine-Hugoniot
jump conditions hold, namely

PAnorm constant (14)

2P constant (15)
p+Pnorm

2

e p/p Qnorm/2 = constant (16)

where qnorm is the velocity normal to the shock in (r,6) coordinates,

D i 1 + and Qnr q - - is the relative velocity normal to the
so norm norm D

moving shock surface. Additionally, the tangential velocity is unchanged across
a shock,

qtang m constant (17)

Only shocks moving into undisturbed fluid are considered here. For this case,
there is only one admissible characteristic compatability relation, and it
corresponds to a Mach conoid on the disturbed (high pressure) side of the shock.
The compatability condition is of the form

aqnorm R (18)
T+ A 4 T 4

where R4 contains derivatives in the X-direction, derivatives interior to the
shock, and undifferentiated quantities. (See Appendix A). Differentiating (14)-(16)

with respect to T and solving for 2 andaT-- it is possible to rewrite (18) as

as L - A 6 - = R4  (19)

where A5 and A6 contain only undifferentiated quantities. The equality of cross
partials, expressed through the chain rule, is of the form

T-e 5  (20)

so that (19) and (20) provide equations for advancing so and st . It is then easy
to get the advanced value of q and use the Hugoniot conditions (14)-(16) tonorm
solve for all properties behind the shock.
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(iii) COMMENTS. For either a shock or a c.d., we have A system of PDE's for
advancing (in time) the surface and the flow variables on either side. These
equations are implemented with a predictor-corrector finite difference method.
Spatial differencing internal to the surface is handled in the usual predictor-
forward, corrector-backward way. However, differencing in the X-direction requires
special treatment since no differences can be taken across the discontinuity.
Thus at the left side of discontinuities the differencing is always backward (both
predictor and corrector), whereas on the right side the differencing is always
forward. This procedure is only first order accurate, but it is possible
(Reference 14) to add a correction term to achieve overall second order accuracy.

At the shock, finite differences are taken on a non-uniform mesh, but again
it is possible to secure second order accuracy by adding a correction term.
Additionally, since the shock is moving into a previously undisturbed fluid where
there are no mesh points, it is necessary to insert new mesh points behind the
advancing shock. This is done by quadratic interpolation of the conservation
vector U using the known primary flow variables at the shock and the values of U
at the mesh points along Y = constant lines behind the shock.

E. INTERACTIONS

Since the sharp discontinuity tracking method treats physically important
discontinuities as explicit surfaces, it is necessary to analyze the situation
which occurs when two such discontinuities interact. Considered here is the case
of an air shock hitting the air-water surface obliquely. It appears that the
qualitative nature of the resulting physical phenomena depends upon the incident
shock strength and the angle at which the discontinuities meet [Reference 71. For
sufficiently strong shocks and sufficiently small incidence angles a, a "regular
refraction" solution exists as shown in Figure 2. In a coordinate system moving
along the surface with point A, the flow is pseudo-steady. Assuming locally
constant states near A and locally plane discontinuities, the problem is reduced
to an algebraic one of finding the twelve unknowns (p,uv,e,p in regions 3 and
4, 0,Y) which satisfy twelve nonlinear equations (Rankine-Hugoniot jump conditions
and constancy of tangential velocity across each of R and W, state equations in
regions 3 and 4, contact discontinuity conditions across the disturbed water
surface).

This locally exact solution gives the necessary information to track the
transmitted water shock W and the disturbed air-water interface. At present the
reflected shock is allowed to be smeared out by the MacCormack finite differencing,
but there is no conceptual difficulty in explicitly tracking R as well.
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3. RESULTS

A. ONE DIMENSIONAL. The shock tracking method has been used successfully

[1,3] in treating aerodynamic problems, but apparently has never been applied to
multidimensional explosion problems. Our first efforts, however, were to
develop the tracking method for spherical explosion problems in one space
dimension and time. In this case, the formulation of Section 2B holds with the

simplification v - 0, 8 - 1- This type of test problem is ideally suited for the

standard Lagrangian finite difference approach (as contrasted with our methods
which are essentially Eulerian) since mesh distortion is no problem in one dimen-
sion. Furthermore, there are special features of the one dimensional problem
which could be exploited to obtain increased computational accuracy. However,
since our goal is to develop methods for multiple space dimensions, we did not
employ any techniques in the one dimensional testing which wouldn't be readily
extendable to more space dimensions. The following cases have been computed:

(i) Spherical Explosion of Pentolite in Water. The sequence of physical
events is described in detail in [Reference 4]. Briefly, it is assumed that a
pentolite sphere is centrally detonated and that the flow field is known at the
instant that the detonation wave reaches the surface of the sphere ("Taylor wave"
solution). At this instant a blast wave begins moving out radially into the
water, followed by the contact discontinuity separating the expanding explosive
gas bubble from the water. A rarefaction moves back into the explosive gases,
followed by the "second shock" which implodes on the sphere's center. Computa-
tional results for peak shock pressure vs. radial distance obtained by the
present method are compared (Figure 3) with those obtained by Sternberg and
Hurwitz [Reference 5]. These latter results are known to agree well with
experiment. It is noted that Sternberg used a sharp shock algorithm, but his
method is not readily extendable to multiple dimensions. He also took advantage
of the fact that, in one space dimension, the initial rarefaction which moves
back into the explosive gases can be explicitly inserted into the computation.
As this cannot be done in more than one dimension, this possibility was not
exploited by the present method. Nevertheless, agreement between the two
computational results is excellent (points of comparison other than those shown
are equally close).
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(ii) Spherical Explosion of Pentolite in y = 1.4 Air. This problem is
more difficult than the explosion in water case because the initial rarefaction
moving back into the explosive gases is considerably stronger. Shown in Figure 4
is a comparison of the computational results for peak shock pressure vs. radius
obtained with the present method (40 mesh points in explosive gas, 15 in air when
main air shock at 20 charge radii), those obtained by Sternberg and Hurwitz
[Reference 5], and a curve fit to experimental data derived by Goodman [Reference 6].
Agreement is generally good, despite the fact that the present method does not
explicitly insert the known one dimensional rarefaction solution (as does Sternberg).
The pressure profiles as a function of radius at selected times is shown in
Figure 5, where the qualitative nature of the interface movement and secondary
shock propagation is seen to be correct.

B. TWO DIMENSIONAL AXISYMMETRC. In two space dimensions, the development of
the method is incomplete, so that the entire EAAW problem cannot yet be handled.
However, some preliminary results for a spherical explosion in air above a water
surface have been obtained. These results are shown in Figures 6 and 7 for a
centrally detonated explosion of a pentolite sphere located 30 charge radii above
the water surface. The computation used an extremely coarse finite difference
mesh composed of about 500 mesh points 'approximately 25 points radially on each
of 20 8 - constant lines). The 2-D axisymmetric computation was
initialized with the I-D computational results at the instant before the spherical
shock hits the water surface. Figure 6 shows the main shock position at this
instant and at some later times. Figure 7 shows the pressure vs. radius at these
same times along the line 0 - 0 (straight down below the charge).

No comparison with experiment is yet possible because the computation has not
been carried out sufficiently far in time. Further results cannot be obtained
until an analysis is made of the various types of interactions which can occur
when an oblique shock hits the water surface. This interaction must be understood
in detail because the present computational method requires an explicit local
handling of discontinuity interactions. This problem is more difficult than
originally anticipated because the family of possible interactions appears to be

very complicated, including regular refraction, Mach refraction, and refraction
with bound and free precursors [Reference 7]. (So far, only regular refraction has
been incorporated in the present method.) Thus this seemingly incidental aspect
of the overall EAAW configuration is in fact a difficult fundamental physical
problem in and of itself. Nevertheless, the preliminary computational results
indicate that, once these local interactions are understood, the present computa-
tional method will prove successful for the overall explosion dynamics problem.
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Appendix A: A1 and Ri appearing in contact discontinuity and shock equations

A, -a = K 1 + K 2P = (speed of sound)
2

22

A2

In A3 and R3, the top sign applies for the right side of the contact
.discontinuity, and the bottom sign applies for the left side.

A3  D a
C

3-raX r + ca

Y 9 r / a c ,,, p / + I V) 
-+ vDva 

cuC 31' c ;j

-pa [a(2u + vcote) + i-( +
c D C c

In %6 and R5, Y-differences are taken along the shock.

A4 pa

4 X r(Qnorm s ax + s ax

+ eI(D ( sP - (D a~ V v l

D Ls S a3 ay ayJ

2
+ a (2u + vcotO)
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A5  a -- B + pa(l -B 9)

A 8 t8
6 D2a

where the terms B3 and B9 are defined as

B3  cti 2Qnrln(D y 2~ - + B)

-2a 2 PB(t + Qnr)

B9 -- G nrf(l)B( F:t

ICP omD +a 2 Pl

a lP~a2 _2c~l~p~a norm)

and the subscript B refers to the undisturbed state ahead of the advancing
shock, whereas unsubscripted variables refer to the disturbed (high pressure)
side.

R Y(ast _t a
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COMPARISON OF 3-D HYDROCODE COMPUTATIONS FOR
SHOCK DIFFRACTION LOADING ON AN S-280 ELECTRICAL EQUIPMENT SHELTER

Richard E. Lottero
Ballistic Research Laboratory

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21005

ABSTRACT

The normal shock diffraction loading on an S-280 Electrical
Equipment Shelter (essentially a rectangular parallelepiped) by a
34.5 kPa (5.0 psi) shock is reported. Two different three-dimensional
hydrodynamic computer codes, BAAL from the Los Alamos Scientific
Laboratory and HULL from the Air Force Weapons Laboratory, are used.
The results from the two hydrocodes are compared with one another,
showing good agreement, and with two existing semiempirical models.
Improvements to these models are suggested, as the computed results
indicate that the loading for this three-dimensional shelter is signi-
ficantly lower than the models predict. The effects of artifical
viscosity in the hydrocodes and of the smearing of the computational
shock in the finite difference grid are also discussed.

I. INTRODUCTION

Shock diffraction and drag phase loading on equipment and
structures have been of significant interest to the Army ever since
the introduction of nuclear weapons. Because of the inherent three-
dimensional nature of such loading, the more commonly accepted method
for obtaining this loading has been through field testing, dating back
from atmospheric nuclear testing to the current large scale high
explosive (HE) testing. Because of the high cost and necessarily
complex planning involved in these tests, they are held relatively
infrequently. Unpredictable anomalies such as jetting frequently
occur, often with the intended targets receiving loading considerably
different from that which had been expected. Space for targets and

data acquisition equipment is invariably at a premium during these

tests, leaving potentially valuable tests untried, and worthwhile data

ungathered.

As pointed out by Taylor
1 in 1972, the accepted methods for

computing shock diffraction loading on simple structures as outlined in

ITay or, W. J., "A Method for Predicting Blast Loads During the

Diffraction Phase," The Shock and Vibration Bulletin, NR. 42. Part

4 of 5, Shock and Vibration Center, Naval Research Laborator,
Wahington, DC., p. 135 (Jan 72).
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the U.S. Army Technical Manual Th-5-856-1 2, hereafter referred to as
the Technical Manual, are no longer of sufficient accuracy for use in
blast hardening and vulnerability assessment studies. Essentially, the
methodoutlined in the Technical Manual treats a given three-dimensional
structure, such as a rectangular parallelepiped, as being locally two-
dimensional. Loading is then computed based on the speed at which a
rarefaction wave travels across a characteristic dimension of the given
target face. During the last several years, numerical methods in the
form of hydvodynamic computer codes for simulating three-dimensional
shock diffraction over obstacles have been advanced to the point where
they can be used to complement, and in some cases replace, the use of
experiments and models such as those in the Technical Manual.

A reference problem is defined, that being an S-280 Electrical
Equipment Shelter being struck by a 34.5 kPa (5.0 psi) overpressure
step shock. The present study includes a comparison of the HULL and
BAAL hydrocodes with one another and with the Technical Manual model
and Taylor's model. Improvements to the Technical Manual model are
suggested, giving good agreement with the hydrocode results. The BAAL
hydrocode has previously been shown to compare well with experimental
shock loading on a similar rectangular parallelepiped at the same shock
strength. Finally a discussion is presented on the net rotational
moments on the shelter as predicted by the several methods in order to
further emphasize the differences in their loading predictions.

II. REFERENCE PROBLEM

The above-mentioned shock diffraction loading problem involves an
S-280 Electrical Equipment Shelter. The shelter is taken to be 3.62 m
wide, 2.17 m deep, and 2.11 m high. It is sitting on the ground with
one of the larger of the two different sized faces, defined here as the
front face, oriented so that it is normal to the velocity vector of an
oncoming one-dimensional shock wave. The shock wave is a step shock
with an overpressure p* of 34.5 kPa (5.0 psi). Ambient conditions
ahead of the shock are a temperature T1 of 288.2

0K (518.7°R), a

pressure p1 of 101.3 kPa (14.7 psi), and a density P1 of 1.225 kg/in

(.0765 lbm/ft3 ). The air both ahead of and behind the shock is
assumed to be a polytropic gas, with a ratio of specific heats y of
1.4.

A simplified, locally one-dimensional, model that can be used to
represent the flow field at the time that the incident shock reflects
off the shelter front face is shown in Figure 1. The flow field shown

2 "Design of Structures to Resist the Effects of Atomic Weapons," U.S.

Arw Corps of Engineers, EM-II!0-345-413 (1 JuZy 1959). (RepubZished
as TM5-856-1 in 1965).
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is that for a shock tube with a closed end. Region 1 represents the
ambient air; region .2 represents the air behind the incident shock
wave; region 3 represents the shock tube reservoir; region 4 represents
the accelerated flow region between the expansion wave and the contact
surface. Finally, region 5 is the region behind the shock wave which
reflected off the rigid wall that represents the shelter front face.
The theoretical peak reflected overpressure of 78.5 kPa as computed by
using the one-dimensional model is an excellent reference point to use
in assessing the validity of the hydrocode solutions. The initial
reflection process at any given point on the front face is one-dimen-
sional until the expansion waves coming in from the top and side edges
of the front face arrive at that point.

III. SIMPLE MODELS

Prior to presenting the results of the hydrocode computations, it
is worthwhile to discuss the existing models for loading on three-
dimensional structures. A logical place to start is the Technical
Manual. The equations presented here are for a step shock.

The Technical Manual's method for computing the loading on the front
face is based on an assumed clearing time tc where

t = (1)
c c5

Here, c. is the sound speed on the front face of the shelter after the

shock has reflected off it; for this case c5 = 369.6 m/s. The value

to be used for h is the smaller of either the height of the shelter or
one-half the width; for this case h = 1.81 m. This gives a clearing
time for the S-280 shelter t = 14.69 ms, where t is "... the time

So c
required to clear the front wall of reflection effects 2 ."1 During this
time, the average overpressure on the front face decreases from the

peak reflected overpressure to a value

+ .51 2(2P* = (P2 - P) + 0.85 P2u2 .(2)

For the case under consideration here, the peak reflected overpressure
on the front face is (P5 - Pl) or 78.5 kPa (11.4 psi), and p* is

37.9 kPa (5.49 psi). The solid line labeled "FRONT" in Figure 2 shows

the average overpressure-time history for the front face of an S-280
shelter being struck by a 34.5 kPa (5.0 psi) step shock wave as computed
using this method.
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Taylor1 suggested an alternate method to estimate the loading on
the front face of an obstacle, based on the number of rarefaction wave
crossings. For a three-dimensional object such as the S-280 shelter
there will be a succession of rarefaction waves originating from the top
of the front face, reflecting in kind off the bottom boundary, plus a
succession of rarefaction waves originating from the side of the front
face, also reflecting in kind off the symmetry plane. In an actual
occurrence of loading through shock diffraction, there would be consid-
erable interaction between the crossing expansion waves. Because Taylor
intended that the method be a simple approximation, the waves are assumed
not to interact with one another. As a further simplification, the
rarefaction wave speeds are assumed to be equal to the sound speed in
the reflection region immediately after the incident shock reflects off
the front face. In the case of the S-280 shelter, the height is 2.1 m,
and the one-half width is 1.81 m. The sound speed c5 in the reflection

region is 369.6 m/s. Using Taylor's method, the required crossing time
for an expansion wave running from the top to the bottom of the front
face is S.704 ms; for an expansion wave running between the side edge
and the symmetry plane the crossing time is 4.897 ms. For each
expansion wave crossing, the average overpressure on the front face is
then computed as a percentage of the initial reflected overpressure on
the front face. The values for average overpressure using the fitted
curve in Figure 14 of Reference 1 are summarized in Table I, and are
shown as the solid line having data points indicated with a " " sign
and labeled "FRONT" in Figure 2. The hydrocode data shown in Figure 2
will be discussed in a later section.

TABLE I. FRONT FACE AVERAGE OVERPRESSURE, TAYLOR'S METHOD

Time Rarefaction Wave % Reflected Overpres sure
(ms) Wave Number* Description Overpressure (kPa)

0.00 - 100 78.5

4.90 1 Side to Sym Plane 86.9 68.3

5.70 2 Top of Bottom 68.5 S3.8

9.80 3 Sym Plane to Side 57.3 45.0

11.4 4 Bottom to Top 52.8 41.5

14.7 5 Side to Sym Plane 50.4 39.6

The time required for the incident shock wave to arrive at the
plant of the back wall is

t D (3)
1

*Model stops at crossing number S.
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where D is the S-280 shelter depth, and Wi is the velocity of the
incident shock. For the case under consideration here, D 2.17 m and

W* - 386.8 m/s, so td = 5.616 ms. The rise time2 required for the

pressure on the back face to go from ambient at time td to its peak

average value is

(t) A (4)b rise c1 '

where a = 4.0, and h and cI are defined as before. Here, h = 1.81 m

and cI = 340.3 m/s, so (tb) rise = 21.28 ms. The peak average over-

pressure2 on the back face is

(i)max =1 (P 2 - pl) 1 + (1 - 8)e " ] (5)

where

1 (P2  - P(6*B ffil (6)

Or )max = 29.3 kPa. Because the shock wave considered here is a

step shock, the model in the Technical Manual implies that the average
overpressure on the back face would remain at (P)a indefinitely.

The overpressure time-history as computed by using this method is
represented by the solid line labeled "BACK" in Figure 2. Taylor's i

data indicate that the constant a used in Equation (4) to compute the
rise time from the arrival time td to the time at which the average

overpressure on the back face reaches the value (P*)iax should be

changed to 2.5 from 4.0. This gives a more rapid pressure rise timeof 13.30 ms on the back face as compared with that computed by usingthe model in the Technical Manual. The overpressure-time history for

the S-280 shelter back face as computed by using Taylor's method is
represented by a solid line having data points indicated with a "+"
sign and labeled "BACK" in Figure 2. Figure 3 shows the time-history
of the average pressure difference between the front and back faces
of the S-280 shelter using the methods outlined by Taylor and in the
Technical Manual. The hydrocode data shown in Figure 3 will be
discussed in a later section.

Taylor does not suggest an improved method for computing the
average overpressure on the top and side faces of an object such as
the S-280 shelter. The method outlined in the Technical Manual is
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presented here for comparison with the computed hydrodynamic computer
code results. From the time t = 0.0 s, when the incident shock wave
reaches the plane of the front face of the target, to the time td at

which the shock wave reaches the plane of the back face, the average
overpressure on the top face varies linearly 2 from zero to

Prop 2 - p)0.9 + o.1 1.0 _ 1 (7)

Using the values for the reference case, Pp 32.5 kPa at t = 5.616 ms.

Because of vortex growth, shedding, and subsequent travel down the top
face, the average overpressure is said to reach a local minimum at time

t = SD (8)
1

which for this case is 28.08 ms. At that time, the average overpressure
on the top face is computed 2 as either

= (P~ - i) 2.0 P " 1 l3] (9.1)

or

= - 1 0.5 + 0.125 ( 2 - P) (9.2)
Prop = P2 "PI) ' Pl 92

whichever is the lesser of the two. At this time, * = 25.2 kPa for
iill Pop

the S-280 shelter. After this time, there is a linear rise in the
average overpressure to a value

*'top = P2 - Pl , (10)

from the time tpmin to a time

tpm n + 1 . (11)

For the present case, t = 98.28 ms and p* 34.5 kPa, the incident
top

shock overpressure. According to the method outlined in the Technical
Manual, the geometry of the S-280 shelter is such that the times and
average overpressures for the top face also apply directly to the side
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face of the shelter. Figures 4 and 5 show the overpressure-time
history for the top and side faces, respectively, of the S-280
shelter being struck by the 34.5 kPa overpressure step shock wave as
computed by using the above method. The hydrocode data and the proposed
model shown in those figures will be discussed later.

IV. HYDROCODES

Until relatively recently, methods such as those outlined in the
Technical Manual were the accepted means for calculating the loading on
a structure being struck by a shock wave. Taylor1 pointed out the more
serious deficiences in the simple model being used, particularly the
poor modeling of three-dimensional effects, and suggested a simple but
quite effective model based on wave interactions. A more generalized
version of Taylor's wave interaction model has since been adapted in
the TRUCK code by Hobbs, et a13. Two significant features of this
model are the ability to model oblique loading and more complex target
shapes.

However, it was apparent that a more general and accurate computa-
tional model than that offered by the simple models was needed. At the
time of Taylor's I paper, hydrodynamic computer codes capable of solving
the Euler equations (and in limited cases the Navier-Stokes equations)
for two-dimensional flow were fairly well established. Significant
advances were also being made in the development of hydrodynamic
computer codes capable of solving three-dimensional problems, particu-
larly at the Los Alamos Scientific Laboratory (LASL), and specifically
with the implicit, arbitrary-Lagrangian-Eulerian (ALE) hydrocode BAAL4 .
The computing methods used in BAAL are described for two-dimensional
flow by Hirt, Amsden, and Cook5 , and also by Amsden and Hirt6 . The

V3 obbs, N. P., Walsh, J. P., Zartarian, G., Lee, W. N., and Wu, Y.,
"TRUCK - A Digital Computer Program for Calculating the Response of
Army Vehicles to Blast Waves," Contract Report ARBRL-CR-00369, U.S.
Army Armament Research and Development Command, Ballistic Research
Laboratory, Aberdeen Proving Ground, MD (April 1978).

4Pracht, W. E. and Brackbill, J. U., 'TAAL: A Code for Calculating Three-
Dimensional Fluid Flows at all Speeds with an Eulerian-Lagrangian
Computing Mesh", LA-6342, Los Alamos Scientific Laboratory, Los Alamos,
New Mexico (August 2976).

5Hirt, C. W., Amsden, A. A., and Cook, J. L, "An Arbitrary Lagrangian-
Eulerian Computing Method for all Plow Speeds", J. Comp. Phys., 14,
227-253 (1974).

6Ameden, A. A. and Hirt, C. W., "YAQUI: An Arbitary Lagrangian-
Eulerian Computer Program for Fluid Flow at all Speeds", LA-i00,
Los AtZwons Scientific Laboratory, Los Alamos, New Mexico (March 1973).
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extension of these methods to three-dimensional flow is described by
Pracht 7. As a result of discussions with representatives of the
Ballistic Research Laboratory (BRL), LASL was contracted to perform a
computation using the BAAL hydrocode, simulating the three-dimensional
shock diffraction loading experiment performed by Taylor at the BRL
using a solid rectangular parallelepiped as a target. The results of
this computation are reported in detail by Gentry, Stein, and Hirt8,
and later in the open literature by Stein, Gentry, and Hirt 9 along with
a more detailed discussion of the solution technique. Briefly, the BAAL
calculation involved a solution of the inviscid Euler equations, with
artificial viscosity used to stabilize flow in regions of deceleration.
The BAAL code has the capability of solving the full Navier-Stokes
equations. In general, the BAAL computation showed excellent agreement
with the experimental pressure data for both the front and back faces.
Experimental data were not taken on the top and side faces. As a
result of the confidence gained in the BAAL code from this comparison,
LASL was contracted to perform a second computation, this time for an
S-280 Electrical Equipment Shelter being struck by a 34.5 kPa (5.0 psi)
step shock wave, the reference case discussed earlier. The results of
this computation are reported in detail by Lottero 10 . Using the data
generated in the BAAL computation1 0 for the 34.S kPa overpressure
shock wave diffracting over the S-280 shelter, and using a simple
scaling model suggested by the BRL to extrapolate the 34.5 kPa data
to estimate pressure-time histories for other comparable shock over-
pressures, Calligeros et a11 1 predicted S-280 shelter responses for

7Pracht, W. E., "Calculating Three-Dimensional Fluid FZows at all Speeds
with an Eulerian-Lagrangian Computing Mesh", J. Comp. Phys. 27,
132-159 (1975).

8Gentry, R. A., Stein, L. R., and Hirt, C. W., "Three-Dimensional
Computer Analysis of Shock Loads on a Simple Structure", Contract
Report BRL-CR-219, U.S. Army Ballistic Research Laboratory, Aberdeen
Proving Ground, MD (March 1975).

9Stein, L. R., Gentry, R. A., and Hirt, C. W., "Computational Simulation
of Transient Blast Loading on Three-Dimensional Structures ", Computer
Methods in Applied Mechanics and Engineering 11, 57-74 (1977).

I0Lottero, R. E., "Computational Predictions of Shock Diffraction
Loading on an S-280 Electrical Equipment Shelter" BRL-MR-2599, U.S.
Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD
(March 1976).

ilCalltgeros, J. M., Waloh, J. P., and Y'ghiayan, R. P., "Structural
Modeling and Response of Conmmand, Control, and Conmmunications Shelter
Systems for Event Dice Throw", KA-TR-251, (May 1978) KAMAN AVIWYNE,
Burlington, MA, Prepared under Contract No. DAADO5-74-C-0744, to be
published as a BRL Contract Report.
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various shock waves for Event Dice Throw. Ethridge 12 has used the
results from References 1, 9, and 10 together with experimental data
to construct correlation functions for blast diffraction loading on the
front and rear surfaces of a rectangular parallelepiped.

During approximately the same time period that the three-dimensional
BAAL computations were being run, a three-dimensional capability was
being added to the HULL1 3 hydrodynamic computer code at the U.S. Air

Force Weapons Laboratory (AFWL). The major differences between the HULL
hydrocode and the BAAL hydrocode are that, for a hydrodynamic problem

such as the one discussed here, HULL solves only the inviscid Euler
equations, utilizes an explicit finite difference algorithm, and is

restricted to a fully Eulerian computing mesh comprised of cells which
are rectangular parallelepipeds. The AFWL wished to verify the new
three- dimensional HULL against existing experimental data or proven
codes. The BRL wished to gain access to another reliable three-dimen-
sional hydrocode, as it appeared that BAAL might not be immediately
available for production work. The AFWL supplied the computing

facilities and the three-dimensional HULL code; the BRL supplied the
test problem and the analysis of the hydrocode output.

The problem chosen for the HULL computation was the reference
problem described earlier, identical to that run in the second BAAL
computation1 0 including the flow field grid formulation. This was
chosen to gain corroboration for the BAAL computation for the S-280
shelter in time for Event Dice Throw.

V. LOADING ON SHELTER FACES

Because the HULL and BAAL codes use different conventions for

naming directions and indices, the BAAL results and the flow field
diagram are reproduced in part using the HULL hydrocode conventions.
Figure 6 shows a three-dimensional view of the shelter in the computa-

tional flow field.

While there is just one BAAL computation for the S-280 shelter,
there are two complete HULL computations, designated HULL 19.8063
(hereafter referred to as HULL A) and HULL 19.8067 (hereafter referred
to as HULL B). There is also an earlier incomplete HULL computation,

12Ethridge, N. H., "Blast Diffraction Loading on the Front and Rear

Surfaces of a Rectangular Para'ielepiped", BRL-MR-2784, U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD (Sep 1977).

I 3Fry, M. A., Durret, R. E., Ganong, G. P., Matuska, D. A., Stucker,

M.D., Chambers, B. S., Neeadam, C. S., and Westmoreland, C. D., "The
HULL Hydrodynomffcs Computer Code", AFWL-TR-76-183, U.S. Air Force
Weapons Laboratory, Kirtland Air Force Base, 17M (Sep 1977).
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designated HULL 202.1 (hereafter referred to as HULL C), that contains

some interesting features. All three HULL runs are for the same 34.5 kPa

step shock wave. The initial formulations of the four computations are

summarized in Table II. Analysis by the BRL revealed that the computa-

tion for HULL C was not valid after 19 ms simulated problem time

because of the arrival of an artificial wave at the front face. The

reflected wave from the front face had traveled upstream, eventually

arriving at the upstream transmissive boundary through which the HULL

code had been feeding the step shock.. Because the algorithm for the

upstream transmissive boundary was formulated to function as a simple

positive image boundary, the initially constant input wave was greatly

modified by the arriving compression wave and its following expansion

wave. Ultimately this artificial interaction at the upstream transmission

boundary caused the incoming, originally steady, wave to be almost

completely turned off, with the artificial wave arriving at the front

face by 19 ms simulated problem time. With the information from the

analysis of HULL C and from extensive analyses of other problems by AFWL,

significant improvements to 3-D HULL were made by AFWL. The problems

labeled HULL A and HULL B were run at AFWL in a cooperative effort by

the BRL and AFWL using the improved 3-D HULL. These two HULL runs are

identical with one another in all respects except that for HULL A the

shock is started at seven flow field cells upstream of the S-280

shelter front face, whereas for HULL B the shock is started at 
the front

face of the shelter, as was the case for the BAAL run and for HULL 
C.

Artificial viscosity was employed for both the BAAL run and 
HULL C; no

artificial viscosity was used in HULL A or HULL B. Also, HULL C was run

with a Courant-Friedrichs-Lewy (CFL) stability factor n = 0.15, while

both HULL A and HULL B used n = 0.50.

Figure 7 shows a comparative plot of the average 
overpressure on

the jront face of the S-280 shelter as computed by 
BAAL; HULL runs A,

B, and C; the Technical Manual; and Taylor's model. The two simple

models both show the theoretical peak overpressure 
of 78.5 kPa at time

zero. The first data point for the BAAL computation is at 
t = 1.57 ms,

showing an average overpressure of 74.3 kPa 
for the front face, 5.4%

below the theoretical peak value. No pressure data prior to this time

were furnished to the BRL, and hence the character 
of the BAAL computa-

tion from 0 I t < 1.571 ms is unknown. 
HULL C is the HULL computation

that most closely resembles the BAAL computation 
in its general nature.

These two computations use essentially the 
same grid; they are both

started with the shock at the front- face. Both computations utilize

a form of artificial viscosity, applying it only in regions of

deceleration, although the actual from 
of the BAAL viscosity function

4

is different from that used in the HULL 
code 1 4. As may be seen in

Figure 7, the HULL C computation appears 
to be quite stable from time

14 Lunn, P. W., Happ, H. J., III, and Neeaa'n, C. '., "Development of an

Artificial Viscosity Function", AFWL-T-77-
5 3 , U.S. Air Force

Weapons Laboratory, Kirtland Air Force Base, NM (Sep 1977).
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zero up to 19 ms, after which the solution drops off significantly due
to the arrival of the artificial wave discussed earlier. The computation
after 19 ms is not plotted. The HULL C computation reaches a peak
average overpressure of approximately 69.0 kPa at 1.3 ms, 12.1% below
the theoretical peak. From a time of 2.5 ms to 17 ms, the BAAL and
HULL C computations are nearly identical. After this time, the BAAL
computation tends to rise to values above the others, whereas the HULL C
computation begins to converge with the other HULL computations until it
is destroyed by the artificial wave. The agreement between the HULL C
and BAAL runs is quite remarkable, particularly so because the HULL code
is using a computational grid designed for BAAL. Normally, the HULL
code uses grids in which the cell-to-cell variation in size is kept
below 5 to 10% in the region where the solution is desired, or in any
region through which a wave must pass on its way to the region where the
solution is desired. The BAAL grid has cell-to-cell variations in size
on the shelter face of 25% for each cell in the X direction, and as
large as 25% for most cells in the Y and Z directions, with much larger
variations in the general flow field away from the shelter. As
indicated in Reference 10, the excellent agreement between the experi-
mentally measured average overpressure and the average overpressure
computed by using BAAL for the front face of a rectangular parallelepi-
ped, using a similar grid, gives reason for confidence in the validity
of the BAAL computation for the S-280 shelter front face, except for
late time where it seems high and for pressure anomalies at the edges
of the front face10.

The next comparison of interest in Figure 7 is that of HULL C with
HULL B. These two computations are identical with one another in all
respects except that HULL B uses n = 0.50 and no artificial viscosity,
and HULL C uses rj 0.15 with artificial viscosity turned on. There are
significant differences between the two computations in the early
diffraction phase. The HULL B computation shows an overshoot of average
overpressure to a peak value at 1.0 ms of 88.5 kPa, 12.7% above the peak
theoretical value of 78.5 kPa, and 28.2% above the peak average over-
pressure of 69.0 kPa at 1.3 ms in the HULL C computation. The HULL B
computation also shows significant oscillation about the results of
the HULL C computation for t < 6 ms. It is doubtful that the higher
CFL number for HULL B is the primary cause of this oscillation; it is
most likely due to running the code without artificial viscosity
combined with having the shock started as a discontinuity at the shelter
front face. It is of interest to note that at 1.6 ms (the HULL B
datum closest in time to the first datum of the BAAL computation at
1.571 ms) the HULL B computation shows an average overpressure of 76.4
kPa, 2.7% below the theoretical peak reflected overpressure of 78.5 kPa.

The set-up of the HULL A computation is identical- with the HULL B
computation except that the HULL A computation begins with the shock
located seven flow field cells upstream of the S-280 shelter front face.
As may be seen in Figure 7, the movement of the shock through those
seven flow field cells results in a significantly different average
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overpressure-time history on the shelter front face for HULL A as
compared with HULL B. Signals from the computational shock in HULL A,
spatially in the form of a forward, exponentially decreasing function,
arrive well ahead of the theoretical shock arrival time. These early
signals are then reflected back continuously into the main portion of
the oncoming computational shock wave, ultimately reducing the peak
overpressure, and delaying and spreading it in time. The peak average
overpressure for HULL A is 69.0 kPa, 12.1% below the theoretical peak,
occurring at 4.35 ms after the theoretical arrival time of the shock
wave at the front face. By 4.35 ms, the theoretical location of the
shock wave is actually 1.68 m downstream of the front face, 77.5% of
the distance to the plane of the back face. Gentry8 et al show the same
qualitative effect in comparing the results of a BAAL computation for a
step shock started at the front face of a rectangular parallelepiped
with that for an identical shock in the same grid started five flow
field cells upstream of the front face. The almost exact agreement in
peak average overpressure for the shelter front face between HULL C and
A is most likely coincidental; the effect manifesting itself in HULL A
is numerical diffusion caused by utilizing a CFL number less than 1.0
and by using a highly non-uniform grid. The X direction cell-to-cell
variation between the seventh and sixth cells upstream of the shelter
front face is 45.0%. The early time effects in HULL C governing the
development of the peak average overpressure on the front face are due
almost entirely to the effects of the modifications via artificial
viscosity to the pressure difference 1 4,1 5 used to comute the accelera-
tions in the Lagrangian phase of the HULL computation 3

. The HULL A
and HULL B computations converge with one another by 20 ms, as should
be expected. The HULL C computation appears to have been tending
toward converging with the other HULL computations just prior to its
being destroyed by the artificial wave discussed earlier.

The solutions obtained by using the method outlined in the
Technical Manual and that suggested by Taylor1 are also shown in
Figure 7. All six average overpressure-time history solutions suggest
that the wave interaction, or diffraction, phase on the front face
lasts for about 15 ms, and is then followed by the drag phase. The
Technical Manual solution for the diffraction phase is significantly
different from all of the other solutions, with the one exception of
being nearly identical to Taylor's solution in the early part of the
diffraction phase. It agrees well with the HULL B solution throughout
the drag phase, with the BAAL and HULL C solutions in the earl: drag
phase, and with the HULL A solution shortly after the beginning of the
drag phase. The solution using Taylor's model, although it is somewhat
high, shows good agreement with the hydrocode solutions throughout the

diffraction phase, except for regions where the hydrocode solutions
show the questionable behavior discussed earlier. This good agreement,

15Richtmyer, R. D. and Morton, K. W., "Difference Methods for initial

Value ProbZems", Second Edition, Interscience Publishers, Inc, New
York, New York, 1967, pp 311-317.
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coupled with the ease with which the method may be applied, make
Taylor's method most attractive for estimating front face diffraction
loading. Taylor's solution for the drag phase is consistently above all
of the others, except for the late-time BAAL solution. Both Taylor's
method and the Technical Manual's method are exact for t 4 0.

Figure 8 shows a comparative plot of the average overpressure on
the back face of the S-280 shelter as computed by BAAL, HULL runs A and

B, the Technical Manual, Taylor's1 suggested improvement to the Technical
Manual model, and a proposed simple model. There is excellent agreement
between the three hydrocode computations. The two existing simple
models 1 2 show significantly different results from the hydrocodes,
particularly the model from the Te-hnical Manual. As indicated in
Reference 8, the average overpressure on the back face in the BAAL
computation for the rectangular parallelepiped agrees quite well with
the experimentally measured average overpressure. This led to the
conclusion that the average overpressure on the back face of the S-280
shelter as computed by using BAAL may also be considered to be an
accurate estimate. This conclusion is strongly reinforced by the
agreement shown by HULL runs A and B. The three hydrocode computations
show a significantly faster rise time required to reach the peak
average overpressure, and that the peak itself is significantly higher
than that predicted by the simple models. The hydrocodes also indicate
a local pressure peak around 19 ms, most likely due to the interaction
with one another of the weakened shocks breaking over the top and around
the side faces.

It is a fairly direct matter to modify the existing model for
average overpressure on the back face to better fit the hydrocode

results, at least for this case. As before, Equation (3) gives
td = 5.62 ms, with p- = 0.0 for t < td. It is proposed that the

constant a in Equation (4) be modified so that a = 2. The modified rise

time is then (tb)rise m 10.64 ms. The peak average overpressure

on the back face may be computed by using a modified version of

Equation (5),

(P~ina p (i()[l + (l-s)e 1] 1 (12)

with a proposed value

1
=n - -

with -- varying linearly from a value of 0.0 at t = t o at

with * va ying li Fr this~a case
t t (trise For this case, (P = 32.4 kPa at t = 16.3 ms.
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As with the model for the top face, there is a decompression phase,

lasting from

[td + (t b)rise < t b + (tb)rise +  (13)

where (V) varies linearly from (P*) to the value (P )drag" This

value is found by substituting n = 0 into Equation (12), so that

(PS drag =p*(t), (1~) (2-s) .(14)

This, for the step shock considered here, then represents (p*) for all

t + (t ) + 2.5h] For the 34.5 kPa step shock on the S-280I d b (brise c 1 "

shelter, (p*)dag = 31.5 kPa for t > 29.6 ms. This modified simple

model is shown in Figure 8. It fits the hydrocode data well, but its

generality, like that of the simple model on which it is based, may be

questionable.

It is appropriate at this time to refer back to the BAAL and HULL B

plots of overpressure versus time in Figure 2 and the net loading plots

shown in Figure 3. There are several reasons why only the BAAL and

HULL B computations are chosen for comparison. The HULL C solution

for the front face is valid only up to 19 ms, as discussed in detail

earlier; the solution for the back face is no longer available, but in

view of the problems associated with this computation, it would

probably be of limited value. The HULL A solution shows significant

deviation from the other hydrocode solutions, most likely due to the

diffusion of the computational shock after its having been started seven

cells upstream of the shelter front face. Both the BAAL and HULL B

solutions start with the computational shock at the front face.

An important point stressed by Taylor
1 is that the method outlined

in the Technical Manual significantly overestimates the net loading on

a three-dimensional target, with net loading defined as the average

overpressure on the front face minus that on the back face. Taylor's

model predicts a significantly lower net load on the S-280 shelter than

does the Technical Manual model, as pointed out earlier 
in Figure 3 and

its accompanying discussion. As shown in Figure 2, except for the BAAL

computation later in the drag phase (t > 20 ms) and the 
HULL B

computation near t = 0, both hydrocode solutions are consistently

below the front face arerage overpressure predicted by 
either Taylor's

model or the Technical Manual model. Conversely, both hydrocode

solutions for the back face indicate that 
the back face is loaded more

rapidly than even Taylor suggests, peaking 
and remaining at average
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overpressure values consistently and significantly above those predicted

by either of the two models for all of the time represented here.

Viewed together, the front and back face loadings from the hydrocode

solutions show a greatly reduced net load on the S-280 shelter, as may
be seen in Figure 3. The curves in Figure 3 suggest that the diffraction

phase for the entire S-280 shelter is essentially over by 20 to 25 ms,

or approximately four crossing times. During that diffraction phase,

both hydrocode solutions show significantly less net loading than that

predicted by Taylor1 , which is in turn significantly less than that

predicted by using the model in the Technical Manual. The implication

is that the whole body response of a three-dimensional target during the

diffraction phase (which can be relatively long as compared with a

single crossing time based on the depth of the structure) may be signif-

icantly less than the simple models predict.

By 25 ms, the net loadings from each of the two hydrocode solutions

shown in Figure 3 have begun to diverge from one another, with the HULL B

solution rising as time increases but remaining well below both of the

simple model solutions, and the BAAL solution eventually rising above

all of the others. This may be an artifact of the BAAL computation, but

that is yet to be determined. From Figure 3 it may be inferred that the

drag phase for the structure as a whole begins at 20 to 25 ms. For shock

overpressures at which a structure such as the S-280 shelter would remai.n

structurally functional as a result of the loading during the diffraction

phase, it can be that the loading during the drag phase will determine

whether or not the structure will be overturned, and hence "killed". Yet

it is during the drag phase that the very limited computational and

semiempirical data that are available, such as are shown in Figure 3,

show significant disagreement. Additional experimental and computational

data in the drag phase for three-dimensional structures are needed in

order that the loading during this phase be better quantified.

Figure 4 shows a comparative plot of the average overpressure on

the top face of the S-280 shelter as computed by BAAL, HULL runs A and

B, the Technical Manual, and a proposed simple model. There is excellent

agreement between the BAAL and HULL B computations throughout the range

of simulated time. The HULL A computation agrees quite well with the

other two hydrocode computations for 0 < t 4 7 ms, and for t > 16 ms.

For 7 < t < 16 ms, the HULL A solution shows a higher, delayed peak than

do the other computations. This is most likely caused by the delayed,

extended, and less severe reflection that the HULL A computation shows

for the front face. The HULL A computation also shows some top face

loading for t < 0 ms, indicating the arrival of the forward portion of

the computational shock ahead of the theoretical shock arrival time.

The solid line in Figure 4 represents the average overpressure 
for

the top face as computed by using the model suggested in the Technical

Manual. The agreement with the hydrocodes for the first 6 ms, approxi-

mately equal to the ..lme required for the theoretical shock wave to

travel along the top face, is excellent. However, the model underpredicts
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the peak average overpressure computed by the hydrocodes, and shows poor
agreement for t > 6 ms. As was done for the models for the back face,
the Technical Manual model for the top and side faces can be modified
without much difficulty to give excellent agreement with the hydrocode
results. These proposed changes follow below.

It is proposed that the following modified version of Equation (7)
be used as a basis for computing the average overpressure on the top
face,

(P--op) = (P2 - Pl) [A (1 - A) (1.0 P ' J (15)

where A is a constant whose value depends on whether the maximum, local

minimum, or drag phase overpressure is to be computed. After a delay
time td as defined in Equation (3), the maximum average overpressure on

the top face, (p--opmax, is computed by setting A = 1, so thattop mx
Equation (15) reduces to

Pop max = (P2 - Pl )  (16)

From time t = 0 to t = td' the average overpressure increases linearly

from zero to (Po ) . From time t = td to a time
top max

(ttop ) pmin= td + 2.0 D (17)
dp W.

the average overpressure on the top faces decreases linearly from

(op- max to a value (p--op)pmin' which is computed by setting A -0.6

in Equation (15). From time (tt) to a time
top pulin

- I

(ttop)drag = (ttop)pmin +.Si D (18)

the average overpressure on the top face increases linearly from

(--*op)pmin to a value (pop)drag_ which is computed by setting A = 0.8

in Equation (15); after this time the average overpressure remains at

-top)drag Thus, instead of dealing with several different equations

as suggested in the Technical Manual
2, it is only necessary to deal with
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an equation of the form of Equation (15), with A = 1.Ofor the maximum,
--- A = 0.6 for the minimum, and A = 0.8 for the drag phase average over-

pressures. For the S-280 shelter considered here, the simple model
proposed above predicts P* 0.0 kPa at t = 0.0 5, (p) 34.5 kPa

top Ftop max=
at t d = 5.62 ms, (*op)pmin = 26.7 kPa at (ttop)pmin = 16.8 i, and

(P*op)drag = 30.6 kPa for t > (ttop)drag = 25.3 ms. The average over-
pressure-time history for the top face as predicted by the modified
model proposed above is shown on Figure 4.

Figure 5 shows a comparative plot of the average overpressure on
the side face of the S-280 shelter as computed by BAAL, HULL runs A and
B, the Technical Manual, and the proposed simple model. The proposed
simple model, being a modification of the Technical Manual model, is
also to be used for both the top and side faces for the S-280 shelter.
Because of the geometry of the S-280 shelter, the side face is nearly
equivalent in size to the one-half of the top face that is actually
simulated in the hydrocode solutions, and because they have similar
orientations in the flow field, the hydrocode solutions for the side
face are nearly identical with those for the top face. Therefore, the
same general comments regarding the relative performance of the hydro-
codes and simple models for the top face loading also apply to the side
face loading. As noted for the modified model proposed for the back
face loading, the generality of this proposed modified model may also
be limited.

VI. ROTATIONAL MOMENT

None of the simple models provide any information concerning the
locations of the centers-of-overpressure on the surfaces of a target as
a function of time; the wave interaction models could provide such
estimates. The TRUCK code 3, which discretizes surfaces for its wave
interaction computations, does provide this capability. To the extent
of the credibility of the hydrocodes and the solutions gained by their
use, such information is readily available 0. Figure 9 shows the time-

* -. history of the Z location of the center-of-overpressure for the S-280
shelter front face as computed by BAAL, and by HULL runs A and B. The
three hydrocode solutions show remarkable agreement with one another,
although the slight differences do seem to be systematic. The center-
of-overpressure stays quite close to half way up the front face for
nearly all of the simulated time, except for a slight movement downward
during the early part of the diffraction phase. Figure 10 shows the
time-history of the Z location of the center-of-overpressure for the
S-280 shelter back face as computed by the same three hydrocode runs.
The back face shows considerable variation in the location of the center-
of-overpressure during the diffraction phase. Prior to the arrival of
the shock wave, the center-of-overpressure is arbitrarily defined as
being at one-half of the height of the shelter; during that time, the
average overpressure is zero by definition. The HULL A plot indicates
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the arrival of the forward section of the computational shock prior to
the theoretical arrival time of t 5.62 ms at the plane of the back
face.

The center-of-overpressure histories on the shelter front and back

faces take on added significance when considered in conjunction with the

average overpressure histories on the respective faces, just as the

average loadings on the front and back faces do when looked at together

in Figures 2 and 3. The simple models 1 ,2 predict higher loading on the

front face than do the hydrocodes. For lack of a better estimate, it
would probably be reasonable to use the centroid of the target face for

the location of the center-of-overpressure for use with the simple model

solutions for both the front and back faces. The hydrocodes indicate

that such an approximation would be reasonable for the front face, but

part of the diffraction phase, the hydrocodes predict a significantly

greater average overpressure on the back face than do the simple

models 1 , 2, acting considerably above the mid-point on the back face.
During the remainder of the time simulated by the hydrocodes, the
computed loading is still well above that predicted by the simple models,
but with the center-of-overpressure near the area centroid. Specifically,
an average of the BAAL and HULL B average overpressure on the back face
over the time interval 6.6 4 t 4 15.8 ms is 151% greater than that
predicted by the Technical Manual, and 57% greater than that predicted

by Taylor's model. For the time interval 17.2 4 t • 33.4 ms, the two
hydrocode solutions average 30% greater than the Technical Manual and

8.7% greater than Taylor's model. The time-histories of the net rota-

tional moment due to overpressure on the S-280 shelter about a line in

the plane of the bottom boundary and perpendicular to the side face as

computed by using BAAL, HULL B, and each of 'he two simple models are

shown in Figure 11. As was the case for the net loading curves in

Figure 3, Taylor's model1 yields rotational moments larger than those

for the Technical Manual very early in the diffraction phase and also

in the drag phase, but significantly smaller values throughout the

majority of the diffraction phase. The HULL B computation shows the

oscillation in the solutions in the early diffraction phase discussed

earlier. For 4 < t < 20 ms the HULL B and BAAL solutions show

excellent agreement with one another, predicting values well below

those for the simple models. During that time interval, the hydrocodes

average 47% below that predicted by the Technical Manual, and 31% below

that predicted by Taylor's model. For t > 20 ms, the BAAL and HULL B

solutions diverge significantly from one another. By 33.1 ms, the HULL B

computation has reached a net rotational moment due to overpressure of

55.0 kN-m, 20.3% below the Technical Manual model's value of 69.0 kN-m,

and 33.5% below the value of 82.7 kN-m obtained by using Taylor's model.

By 33.6 ms, the BAAL computation has reached a net rotational moment

due to overpressure 97.8 kN-m, 41.7% above the value from the

Technical Manual model, 19.3% above the value from Taylor's model, and

77.8% above the value from the HULL B computation at 33.1 ms. The

reason for this divergence is two-fold. The BAAL computation shows
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significantly higher late-time overpressure on the S-280 shelter front
face than does the HULL B computation, as shown in Figure 7, with a
center-of-overpressure consistently above that for the HULL B
computation, as shown in Figure 9. Conversely, the BAAL computation
shows only somewhat higher late-time overpressure on the S-280 shelter
back face then does the HULL B computation, as shown in Figure 8; it
has a center-of-overpressure consistently below that for the HULL B
computation, as shown in Figure 10. At least part of the reason for
this difference in behavior between the two hydrocode solutions is the
apparent anomalous behavior in the BAAL solution discussed in Reference
10.

VII. CONCLUSION

In general, the hydrocodes show good agreement with one another in

predicting overpressure averaged over each of the given faces of the
S-280 Electrical Equipment Shelter. They are also useful as a comparative
tool in evaluating the ability of the relatively simple models discussed
here to predict such loading. Additionally, the hydrocodes provide a
great deal of information for which predictive models are not available
and which is not readily gathered experimentally. An example of this
is the use of the data from the hydrocodes to make accurate estimates
of the time-history of the center-of-overpressure for use in computing
rotational moments. Also, the analysis of the various hydrocode
results discussed in this report has allowed some quantification of the
effects of such items as the value of the CFL number, numerical
diffusion caused by the finite difference grid, and artificial viscosity.

The model outlined in the Technical Manual does not appear to be
suitable for predicting either the shock diffraction or the drag phase

* loading on a three-dimensional structure such as the S-280 Electrical
* Equipment Shelter. The front face loading prediction for the drag

phase seems to be too high; the prediction for the drag phase appears
to be reasonable. The prediction for the back face loading is too low,
and is made worse by predicting too long a rise time needed for over-

pressure to go from zero to the predicted drag phase value. The models

for predicting the loading on the top and side faces are fairly good in

predicting the initial increase in overpressure with time, but under-

estimate the peak value to which the overpressure rises; thereafter,
the models appear to be significantly in error.

Taylor's method1 for estimating the loading on the front of a

three-dimensional structure is a significant improvement over the model

suggested in the Technical Manual, particularly during the diffraction

phase; it appears to be somewhat high as compared with the hydrocode

predictions for the drag phase. The change suggested by Taylor to be

applied to the Technical Manual model for the back face loading is an

improvement, but it too underpredicts the loading for all time, missing
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the peak overpressure and overestimating the time required to reach the

predicted peak overpressure. Taylor did not address the top and side

face loading.

The empirical models suggested by Ethridge
1 2 provide a quick and

fairly accurate means of estimating the average overpressure as a

function of time on both the front and back faces of a rectangular

parallelepiped. The modifications to the models in the Technical Manual

for the back, top, and side faces of a rectangular parallelepiped

proposed in this report also provide a quick, accurate means of estimating

average overpressure, with the added feature of providing some of the

detailed loading variations observed in the hydrocode computations.

The simple models do not provide a means for computing the time-

history of the center-of-overpressure on the various faces of the

structure. As a result, it is not possible to compute rotational
moments unless assumptions are made concerning the location of the center-

of-overpressure. Alternatively, center-of-overpressure models could be

developed. The hydrocodes do provide this information.

The hydrocodes and the simple models all provide conflicting infor-

mation during the drag phase. This late-time loading is important

because it is during this time that overturning either will or will not

take place. Unfortunately, relatively little experimental data have

been gathered for late-time loading. This problem needs to be resolved

both experimentally and computationally. Comparison of late-time

loading obtained via experiment with that from inviscid codes such as

HULL will also be of value in determining whether or not viscous effects

should be modeled.

A more complete analysis may be found in Reference 16.

1 6Lottero, R. E., 'etailed Comparison of 3-D Hydrocode Computations

for shock Diffraction Loading on an S-280 EZectricaZ 
Equipment

Shelcer", BRL-R-( ), U.S. Army BalZistic Research LaboratoryJ,

Aberdeen proving Ground, MD (to be published).
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LIST OF SYMBOLS

c velocity of sound (m/s)

D the depth (m) of the target, measured in the direction of travel
of the incident shock wave

h the clearing height (m), equal to the smaller of either the
height of the target or one-half of its width

p static, or side-on, pressure (kPa), absolute unless otherwise

indicated

T static temperature (*K)

t time (s), where t E 0.0 when the incident shock wave arrives at
the target front face, as computed according to theory

u particle velocity (m/s) with respect to an Eulerian reference
frame

W wave velocity (m/s) with respect to an Eulerian reference frame

X the direction of measure of depth (m)

Y the direction of measure of width (m)

Z the direction of measure of height (m)

a a constant multiplicative factor

(P 2 -Pl)/2P

'y the ratio of specific heats

Courant-Friedrichs-Lewy (CFL) stability factor

P static density (kg/m3), absolute unless otherwise indicated

Subscripts.

b the back face of the target

c clearing time when used with the symbol."t", the " ... time
required to clear the front wall of reflection effects ...

drag the drag phase

f the front face of the target
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LIST OF SYMBOLS (Cont'd)

i incident shock wave

max a peak value

puin when used with the symbol "t", the time required for the average
pressure on a target face to reach a local minimum value after
having been loaded to a peak value by a shock wave

rise when used with the symbol "t", the time required for a target face
to reach a peak average pressure after the initial arrival of
the incident wave at that face

top the top face of the target

1 ambient, atmospheric, or reference condition, specifically that
region of undisturbed gas ahead of the incoming shock wave

2 the region behind the incident shock wave

3 the region representing the shock tube reservoir

4 the region separated from the shock tube reservoir by the
expansion wave, and separated from the shocked gas by the
contact discontinuity

S the region behind the reflected shock wave

Superscripts

* the value over the reference, or ambient condition (e.g., p*

represents overpressure)

- average value over a given face of the target
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OBLIQUE INTERACTION OF A SHOCK WAVE WITH A THREE-DIMENSIONAL
TACTICAL COMMUNICATIONS SHELTER

R. E. Lottero, J. D. Wortman, B. P. Bertrand and C. W. Kitchens, Jr.
Ballistic Research Laboratory

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21005

ABSTRACT

Three-dimensional, unsteady finite-difference calculations with the
HULL hydrocode are used to describe the shock diffraction process
resulting from a shock wave striking the front of an S-280 Electrical
Equipment Shelter at oblique incidence. The 52.5 obliquity of the
incident 34.5 kPa (S psi) overpressure shock on the front face produces
a peak reflected overpressure that is approximately 50% larger than
that for normal reflection. The numerical calculations are discussed,
and evaluated by comparison with experimental pressure measurements
taken in shock tube tests on a scale-model shelter. Difficulties are
experienced in both the 3-D calculations and the experiment in resolving
the peak reflected overpressure on the front face; comparisons for other
shelter faces show good agreement. Three-dimensional and two-dimensional
grid convergence studies are discussed which quantify the influence of
grid size on the numerical results.

I. INTRODUCTION

It has generally been assumed that the most severe shock loading
situation for a given structure occurs when the shock strikes its most
vulnerable face at normal incidence. However, it is also known that
when a shock wave with an overpressure 4 140 kPa (20.3 psi) strikes a
target at oblique incidence, the peak reflected overpressure can be
more than 50% larger than that for normal reflection . This oblique
interaction process is of interest from both fluid dynamic and vulner-
ability viewpoints. The duration and magnitude of the peak reflected
overpressure are functions of the incident shock overpressure, the

angle of incidence between the shock wave and the target face, and the

distance along the target face measured from the leading edge. When

the angle of incidence is at the critical Mach angle (to be discussed

later) the reflected overpressure reaches its highest possible value.

For relatively small targets, the enhanced peak reflected overpressure
is difficult to measure experimentally because of its small spatial

lBrtr ad, B. P., 'W4eaurement8 of Weak Shock Wave Reftected Preseure

Hi.tories on a 2-DimenjonaZ Surface," ARBRL-MR-02966, U.S. Army

BaZZietia Research Labor'atory, Aberdeen Proving Groud, Maryjand

(October 19 79).
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extent and time duration, and the response limitations of pressure
gages. The peak reflected overpressure is difficult to predict with a
hydrodynamic computer code because of the general tendency of such codes,
especially Eulerian codes, to smear discontinuities such as the incident
and reflected shock waves.

The peak overpressure enhancement at obliquity for shock waves with
an overpressure 4 140 kPa is of interest because such shock waves cover
a large part of the assumed threat range from tactical nuclear weapons.
The S-280 Electrical Equipment Shelter (henceforth called the S-280
shelter) houses communications equipment for many Army systems, and
will be on the tactical battlefield in large numbers. The S-280 shelter
is currently being hardened to decrease its blast/thermal vulnerability,
and a 34.S kPa (5.0 psi) overpressure shock wave was chosen for the
present work because it represents a mid-range threat level. At normal
incidence, the peak reflected overpressure for this shock wave is
78.5 kPa (11.4 psi). The critical Mach angle for a 34.5 kPa shock wave
is 52.5. At that angle, the peak reflected overpressure is estimated !

to be as high as 122 kPa (17.7 psi), 55% greater than the value for
normal incidence.

It is important from a vulnerability viewpoint to determine
whether or not such a peak is of sufficient duration and spatial
extent on the S-280 shelter that a 34.5 kPa overpressure shock wave
represents a greater threat at 52.5 ° obliquity than at normal incidence.
This is one of the objectives of the present study. A second objective
is to use a combined experimental and computational research program
to verify the three-dimensional shock loading prediction capability of
the HULL2,3 hydrocode currently at the BRL, and assess the practicability
of such calculations.

II. BACKGROUND

This section provides an introduction to oblique shock diffraction.

When an incident shock wave strikes a given face of a rectangular
parallelepiped (such as an S-280 shelter) at some oblique angle, it
also strikes another face at the complement to that angle. The initial
contact between the incident shock wave and the structure occurs at the
corner formed by the intersection of these two faces. This corner
becomes a shock diffraction corner.
2Fr, M. A., Durrett, R. E., Gonong, G. P., Matuska, D. A., Stacker,
M. D., Chambers, B. S., Needham, C. E., and WestmoreZand, C. D., "The
HULL Hydrodynamnics Computer Code," AFV-TR-76-183, U.S. Air Force
Weapons Laboratory, KirtZand Air Force Base, NM (September 1976).
'Fry, M. A., Needham, C. E., Stucker, M. D., Chambers, B. S., and
Ganong, G. P., "AFWL HULL CaZuZations of Air BZast Over a Dam SZope,"
AFW.-T-76-154, U. S. Air Force. Wepon8 Laboratory, irtland Air
Force Base, NM (October 1976).
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As the divided incident shock travels along the two faces, rar-
efaction waves emanating from the diffraction corner travel along the
faces at the local speed of sound, following each incident shock/surface
intersection point as it moves along the respective face. Depending on
the angle of incidence of the shock on the face, the corner rarefaction
wave will either fall continually farther behind the incident shock/
surface intersection point, or it will eventually catch up. The initial
reflected overpressure experienced at a given point on the surface is
not relieved until the corner rarefaction wave arrives, or similar waves
arrive from other parts of the flow field.

The incident shock wave of interest here is a 34.5 kPa overpressure
shock. Figure 1 shows shock reflection factors (the ratio of the peak
reflected overpressure to the incident -overpressure) as a function of
the angle of shock incidence a for this shock strength. The angle at
which the corner rarefaction wave just catches up with the incident
shock/surface intersection point is aC. Regular reflection theory is
valid for 0 < a < aC . The experimental data indicate that the peak

overpressure is reached at a = 52.50, the critical Mach angle. At I.,

the intersection point between the incident and reflected shocks is on
the verge of lifting off the surface, at which time a Mach stem and
triple point are formed.

Information inferred1 by measuring the Mach stem velocity for

a - am indicates that the peak reflected overpressure in this region

may be even larger (122 kPa) than that indicated by the experimental
data in Figure 1. The enhanced peak reflected pressure for a - is

of interest from computational and experimental viewpoints, and may
have important implications in blast vulnerability.

'1 III. EXPERIMENTS

The experiments were conducted in the BRL metre (24 inch O.D.)
shock tube4 . A 1/18.45 scale model of the S-280 shelter was constructed
of aluminum, of sufficiently heavy construction that it is essentially
non-responding for the shock wave strengths used here. The model
dimensions are 19.58 cm (width) by 11.38 cm (height) by 11.79 cm
(depth). One of the 19.58 cm by 11.38 cm faces is defined as the front
face. The model was mounted in the shock tube so that the angle a
between the front face and the incident shock wave front was 52.50 -
0.50. One of the 11.79 cm by 11.38 cm faces is defined as the windward
side face, the angle between that face and the incident shock being 37.5*.

4 Coulterz, G. A. and Bertrand, B. P., "BRL Shock Tube FaoiZity for the
SimuZation of Air Blast Effects," BRL-MR-1685, U.S. Azw BaZZlistic
Research Laboratories, Aberdeen Proving Ground, MD (August 1965).
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Experimental shots were conducted for various overpressures and
angles of incidence. The two described in Table I will be discussed
here. The angle between the shock front and the shelter front face is
a, p is absolute pressure, T is temperature, and E.1 and E.2 indicate
the shot numbers referred to in this paper.

There were a total of eight pressure gages on the model, mounted
flush to the model surface. Table II shows the gage positions where
pressure measurements will be compared in detail with the hydrocode
computations. The gage locations are given in a primed coordinate
system, having its origin (0., 0., 0.) at the bottom corner of the
leading vertical edge of the model. The front and back faces are
constant X' planes, the side faces constant Y , and the top and bottom
faces constant Z' . The gage positions are defined by a letter-and-
number pair; the letter denotes the face and the number denotes the
gage position on the face. All gages in shots E.1 and E.2 had a
sensitive element diameter of 0.51 cm (.20 in), except gage F2 in shot
E.2, which had a smaller diameter of 0.32 cm (.125 in) and a higher
frequency response than the other gages.

IV. FINITE DIFFERENCE COMPUTATIONS

The airblast version of the HULL2'3 hydrodynamic computer code was
used for the shock diffraction computations. The HULL code currently
in use at the BRL is AFWL version 8, received in September 1978, with
modifications made by the BRL, and by SAI5 under contract to the BRL.
Some of the modifications were necessary to run the code on the BRL's
CDC 7600; others were necessary to convert from using a SAIL 6 pre-
processor for HULL to using a CDC update/SAI-POST preprocessing system.
Other modifications were added to allow the input of an off-angle step
shock through any combination of the left, bottom, and aft boundaries
of the 3-D computational grid and the left and bottom boundaries of the
2-D Cartesian grid.

The HULL hydrocode uses an explicit time step predictor-corrector
method similar to a Lax-Wendoff7 scheme to solve the inviscid Euler
equations. Detailed descriptions of the differencing method used in

5HadaZ, .7. A., Chambers, B. S., and Clemens, R. W., "SUport to BRL:
HULL Code IipZementation on a CDC 7600," SAI-80-701-AQ, Science

Applications, Inc., McLean, VA (August 1979).

'Graham, D. C., Gaby, L. P., and Rhoades, C. E., "SAIL, An Automated
Approach to Software Development and Management," AFWL Interim Report

1971-6, U.S. Air Force Weapons Laboratory, irtland Air Force Base,
NM (October 1976).

7Richtqyer, R. D. and Morton, K. W., "Difference Methods for Initial
Value Problems," Interucience Publishers, Inc., John Wiley Sons,
Inc., Second Edition (1967).
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HULL are given in References 2 and 3. The computation is performed in
two phases, a Lagrangian phase where flow field cells perform work on
one another, and an Eulerian phase where material is fluxed across cell
boundaries using a donor cell method.

Table III lists the HULL hydrocode computations described in this
paper. Computation H.l, which matches experiment E.1 in shock strength
and ambient conditions, will be discussed in detail in this and the
next section. The remaining HULL computations, H.2 - H.7, match
experiment E.2. Results from H.2 - H.7 will be discussed in the
section titled "Convergence Study." The Courant-Friedrichs-Lewy
number was 0.5 for all computations; artificial viscosity was not used.

The finite difference grid used for computation H.l contains
92,512 flow field cells, with a 49 x 59, x 32 grid in the X, Y, and Z
directions, respectively. The S-280 shelter model is built using 6,912
nearly cubical rigid cells, with 16 equal X direction cells
(AX = .7366 cm), 27 equal Y direction cells (AY = .7253 cm), and 16
equal Z direction cells (AZ = .7112 cm). The rigid cells do not
directly enter the computation. They are used to construct an
obstacle having a perfect reflection surface. A rigid cell does
require the same storage space as a hydrodynamic cell, so this space is
wasted. To minimize the smearing of the computational shock as it
passes through the grid prior to striking the shelter, the shock is
placed well into the grid at the initial mesh generation, 2.66 cm
upstream of the shelter leading edge. The shock input algorithm keeps
track of the theoretical intersection of the shock wave with the
boundaries, nrogressively moving the input shock along the boundaries
as the comp-,tation proceeds.

Figure 2 shows a top view of an isobar (constant pressure) plot of
the flow field for H.A in the bottom-most plane of cells after one
computational cycle. (A similar plot is not available at cycle 0.)
Shock arrival time at the shelter leading edge is defined as t = 0.0.
In Figure 2, the incident computational shock is indicated by the
closely-spaced pressure contours. The shock is moving from the lower
left corner of the figure toward the upper right corner. What appears
to be a bent right end of the shock is actually the set of pressure
contour identification numbers which are overwritten by the plot
routine. The contour labelled "I" is not a pressure contour, but is
an artificial use of the contour algorithm to show the outline of the
shelter in this plane.

Figure 3 shows isobars in the same plane at t = 374.9 us; the
shock wave has passed slightly more than half-way across the shelter.
Contour 5 shows the general shape of the reflected shock. Figures 2

and 3 give a qualitative indication of the flow field predicted by the

3-D HULL hydrocode. The next section provides detailed comparisons

betwee.n experiment E.1 and HULL computation H.l.

97



V. COMPARISON OF COMPUTATIONAL AND EXPERIMENTAL RESULTS

In this section "experiment" refers to experiment E.1, and
"computation" refers to computation H.1. :Computation H.1 was run on
the BRL's CDC 7600 for 155 computational cycles, with a total job time
of 49 minutes at a cost of $776.

Figure 4 shows a comparison between the measured and the computed
overpressure-time history for gage F2. The gage is located at 3/4 of
the distance along the shelter front face and at 1/4 of the shelter
height from the ground plane. The agreement between the two results is
good, except for the initial shock interaction with the structure.
Because the computational shock is spread over three or four flow field
cells, it shows an earlier initial interaction and a reduced peak8. The
agreement beyond the peak is very good, although the computed overpressure
is slightly greater than that for the experiment for 0.6 4 t < 1.0 ms. The
second peak in the experimental data at 1.22 ms is caused by the arrival
of a secondary shock produced by the interaction of the incident shock
with the model; it traveled to the shock tube wall, reflected off the
wall, and returned to strike the model. A similar second peak is seen
in the other comparisons in this section. It should be noted that the
X's on the H.1 curve in this and the next three figures mark every
fifth computed data point; they have been added primarily as a visual
aid.

Figure 4 shows a measured peak reflected overpressure of 86.2 kPa
occurring at .320 ms, and a corresponding computed peak of 76.2 kPa at
.331 ms. The difference in time is due in part to the difficulty in
establishing a zero reference time at the shelter leading edge for the
experiment because of the discrete data sampling rate and the gage
diameter and response time. There are similar computational problems
due to the numerical diffusion of the shock wave as it travels through
the finite difference grid; this causes the peak reflected overpressure
to be reduced and delayed in time8'9,10. It was decided to establish
time-zero estimates for the experiment and the computation independently
and use these to compare the results.
8Lottero, R. E., "Comparison of 3-D Hydrocode Computations for Shock
Diffraction Loading on an S-280 Electrical Equipment SheZter," to be
published in the proceedings of the 1980 Army Numerical Analysis and
Computers Conference, 20-21 February, 1980, NASA-Ames Research
Center, Moffett Field, CA.

9Lottero, R. E., '"etaized Comparison of 3-D Hydrocode Computations
for Shock Diffraction Loading on an S-280 EZectrical Equipment
Sha.7er," to be published as"a BRL report, U.S. Army Ballistic
R-,,a_ :,A Laboratory, Aberdeen Proving Ground, MD.

1°Gentry, R. A., Stein, L. R., and Hirt, C. W., "Three-Dimensional
Computer AnaZysis of Shock Loads on a SimpZe Structure, " BRZ-CR-219,
U.S. Army Balistic Research Laboratory, Aberdeen Proving Ground, MD
(March 1975).
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Neither the measured nor the computed peak reflected overpressure
were near the expected peak of 115 kPa. The measured peak of 86.2 kPa
is 25% less than the expected peak, and 16% greater than the normal
reflection peak. The computed peak is 34% less than the expected peak,
and 3% greater than the normal reflection peak. This is likely due to
the finite gage and cell sizes which are used. In the experiment, the
gage diameter is 2.6% of the span of the front face. In the computation,
the cell dimension in the Y direction on the front face is 3.7% of the
span, 42% larger than the gage diameter. It appears that the spatial
extent of the overpressure peak is so small that it is largely inte-
grated out even with these relatively small units of measure. Thus, it
can be concluded that the overpressure peak does not make a significant
contribution to the loading on the model and hence is not significant to
the S-280 shelter itself. The problem of resolving the peak is still
of interest from a fluid dynamics viewpoint, and will be studied
further in the next section.

Figure 5 shows a comparison between the measured and computed
overpressure-time histories for gage S2, located in the center of the
windward side face. The angle between the shock front and this face is
37.5g. The agreement is good except for the initial shock interaction.
For this angle, the expected peak reflected overpressure is essentially
equal to the normal reflection overpressure of 74.2 kPa. The computa-
tional peak is 77.8 kPa, 5% greater than the normal reflection value
and 7% greater than the measured peak (73.0 kPa), which is in turn 2%
lower than the normal reflection peak. The peak values for this gage
position will be discussed in detail in the next section.

Figure 6 shows a similar comparison for gage S1, located at the
center of the leeward side face. It, too, shows a smearing of the
computational shock, which has also been weakened by a rarefaction wave
produced at the trailing edge of the front face. The general agreement
between the curves is good. They both show a pressure plateau of
22.5 kPa for 0.6 < t < 0.9 ms, caused by the weakened incident shock.
The pressure rise which begins at .9 ms is caused by the incident shock
breaking over the top face, sending another weakened shock down the
leeward side face. The curves agree qualitatively, but the computed
results vary from 5 to 10% less than the experimental results after
.9 Ms. It may be that viscous effects, which HULL cannot model, are
becoming important by this time.

Figure 7 shows a similar comparison for back face gage B2. This
gage is located at 3/4 of the distance along the back face, and at 1/4
of the height of the shelter from the ground plane. The agreement
between the computed and the measured results is very good, except at
the time of initial shock arrival (for the same reasons discussed
earlier) and t > 1.0 ms when viscous effects may be important.
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Figures 4 through 7 typify the good agreement between the computed
and experimental results over the entire structure, including the top
face. Good agreement is also shown when the overpressure results are
integrated in time to compute overpressure impulse. Those results plus
a more detailed analysis may be found in Reference 11.

VI. CONVERGENCE STUDY

Because the expected peak reflected overpressure was not obtained
on the front face (gage position F2) in either the calculations or the
experiment, a convergence study was performed to study the sensitivity
of the peak values to both grid and gage size. It was expected that
smaller grid sizes and smaller gages having higher frequency response
were needed to resolve the small region of enhanced reflected over-
pressure on the front face. Only a limited grid refinement was possible
for the 3-D computational problem because of cost and storage limitations.
Most of the computational results were obtained for a representative 2-D
slice of the grid for H.1, which then modeled a shelter with infinite
height. Experiment E.2 was performed to study the effect of reduced
gage size (.32 cm) and higher frequency response on the measured front
face peak.

The grid convergence study matching shot E.2 consists of six
computations: H.2 and H.3 (3-D) and H.4-H.7 (2-D). The dimensionless
cell sizes in Table III are normalized by the values of AX, AY, and AZ
on the shelter surface in H.l. The experimental gage sizes are normal-
ized in the same way, using AY from H.1 for the front face gage and AX
from H.1 for the windward side gage. Figure 8 compares the peak
reflected overpressures obtained at gage position F2 on the front face.
There is a systematic displacement between the 2-D and 3-D results,
apparently due to differences in the finite difference algorithms; this
is currently being studied. The indicated "expected" peak overpressures
for E.l and E.2 are slightly different because of differences in the
incident shock strengths. These expected values are inferred from4 Bertrand's experimental measurements1 . The experiments showed
essentially no difference in overpressure peaks relative to the expected
values. The computations show that the peak overpressure increases
toward the expected value as grid size approaches zero, but the results
for windward side face gage S2 indicate that part of that increase may
be due to artificial sensitivity of the peak to grid size.

Figure 9 shows the results of the convergence study for gage
position S2. In this case, a = 37.S*, and the expected peak over-
pressures are the same as for nbrmal reflection. The qualitative trend

11Lottero, R. E., Wortmrn, J. D., Bertrand, B. P., and Kitchens, C. W.,
"ObZique Interaction of a Shock Wave with a Three-DimenaionaZ Simpe
Structure, Part 1, to be published as a BRL Report, U.S. Army
Balistz c Research Laboratory, Aberdeen Proving Ground, MD.
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is similar to that shown in Figure 8. The computational results 6ver-
shoot the expected values by as much as 20% as the grid size is decreased,
indicating an undesirable sensitivity of the peak value to grid size.
This difficulty is being investigated.

VII. CONCLUSIONS

This study has shown that the 3-D HULL hydrocode can produce
accurate shock diffraction loading predictions for this class of
problems at moderate cost. The BRL code version has been modified to
treat an incident step shock moving obliquely through the 2-D and 3-D
Cartesian grids. This allows the modeling of the 32.75 and 34.5 kPa
(nominal 5 psi) overpressure shocks striking the front face of an S-280
Electrical Equipment Shelter at a 52.50 angle of incidence, using smooth
shelter walls instead of undesirable rough "stair-stepped" surfaces
formed if the shelter were rotated in the grid. The agreement between
the 3-D computational and experimental results is good on all shelter
faces. Errors of from -12% to -9% (H.1/E.1 and H.2/E.2, respectively)
are experienced in resolving the peak reflected overpressure on the
front face (F2), and +7% to +8% on the windward side face (52); error
magnitudes less than 10% are present beyond the peak. A grid convergence
study has quantified the sensitivity of the peak reflected overpressure
to grid size. The expected enhanced peak overpressure on the front
face at 52.50 obliquity proved to be difficult to measure or compute.
It is of such short duration and limited spatial extent that it is
apparently unimportant as a damage mechanism for the S-280 Electrical
Equipment Shelter.
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TABLE 1. EXPERIM!ENTAL SHOTS

Shot Number Ambient Values Shock Overpressure
Actual Ti Paper (Degrees) ka)TC)(c)

24-79-126 E.1 52.5 101.42 22.25 32.75

24-79-134 E.2 52.5 101.90 24.31 34.50

TABLE II. GAGE POSITIONS

Gage Number Face )' (cm) Y' (cm) Z'(cm)

F2* Front 0.00 14.68 2.84

B2 Back 11.79 14.68 2.84

51 Leeward Side 5.89 19.58 5.69

S2 Windward Side 5.89 0.00 5.69

*High frequency gage, shot E.2 only.

TABLE III. HYDROCODE COMPUTATIONS

Calculation Number Cell Sizes

Actu-al This Paper Dimensions Relative to H.1

37.126 H.1 3-Dl 1.0

.137.0 H.2 3-D 1.0

37.001 H.3 3-D 0.5I37.11 H.4 2-Dl 1.0

37.9 H.S 2-D 0.5

37.10 H.6 2-Dl 0.25

37.6 H.7 2-D 0.12S
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Figure 2. Isobars at t u-68.2 u~s in ground plane fOT HA]
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INavier-Stokes Solutions for Spin-Up in a
Filled Cylinder

Clarence W. Kitchens, Jr.

Ballistic Research Laboratory
U.S. Army Armament Research and Development Command

Aberdeen Proving Ground, Maryland

Abstract

A predictor-corrector multiple-iteration scheme is adapted and

used to solve the unsteady Navier-Stokes equations. Numerical solutions

for Reynolds numbers up to 50,000 are obtained for the transient spin-up

flow in a cylindrical container. The grid point distribution is

optimized using coordinate transformations to simultaneously resolve

details of both the interior and endwall/sidewall boundary layer flows

formed during spin-up. Calculations for five test problems show very

good agreement with previous computations and experimental measurements.

Transient phenomena occurring at early time near the sidewall, including

reversed flow regions and inertial oscillations are discussed as well as

certain aspects of the endwall Ekman layer flow.
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Nomenclature

a cylinder radius

b,E,de coordinate transformation constants

c cylinder half-height

Ek Ekman number [= v/({c 2 )]

r,R nondimensional and dimensional radial coordinate

Re Reynolds number [= n a2/v]

t,T nondimensional and dimensional time (t - aT)

u,v,w r,e,z nondimensional velocity components

z,Z nondimensional and dimensional axial coordinate

L cylinder aspect ratio [- c/a)

transformed radial coordinate

y,r nondimensional and dimensional circulation

eI  iteration convergence criteria

,Z nondimensional and dimensional vorticity

n transformed axial coordinate

e azimuthal coordinate

v liquid kinematic viscosity

nondimensional and dimensional stream function

final cylinder rotation rate

initial cylinder rotation rate

AB,An grid sizes in B and n coordinates

At time step

Superscripts

m yc - iteration level

n - iteration level
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Introduction

The objective of this work is to develop an accurate numerical

procedure for solving the unsteady Navier-Stokes equations to describe

transient spin-up flow occurring in a cylindrical container when it is

suddenly rotated about its longitudinal axis. Knowledge of this internal

flow is needed to design gun-launched projectiles which carry smoke/

incendiary agents or chemical payloads. Liquid payloads enhance spin

decay of projectiles1 '2 and their presence can produce flight dynamic

instabilities as a result of resonance between the projectile nutational

motion and inertial oscillations in the rotating liquid 3 . From a

computational viewpoint this problem is instructive because it is an

example of a class of internal flow problems for which computational

experiments can uncover details of the flow that cannot be easily

visualized or measured experimentally.

The results presented here demonstrate that a predictor-corrector

multiple-iteration (PCMI) technique developed by Rubin and Lin4 for

solving steady three-dimensional boundary region problems can be

successfully adapted to solve the unsteady Navier-Stokes equations. In

the present approach this method is combined with the Gauss-Seidel

procedures and grid stretching transformations to produce an accurate

procedure for describing the spin-up process. Calculations with the

PCMI-method have been performed for spin-up from rest and spin-up from

an initial state of solid-body rotation. Numerical results have been

obtained for a range of cylinder aspect ratios, a, from 0.3 to 4.4 and

a range of Reynolds numbers from 215 to 50,000. Calculations performed

for five test problems show very good agreement with previous
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computations6'7 ,8 and experimental measurements 6 O9 . Numerical results

have been used10 to quantify the flow in the Ekman (or endwall) boundary

layers during spin-up from rest and develop an appropriate compatibility

condition for use in Wedemeyer's spin-up model1 . Neitzel11 successfully

used the PCMI procedure developed in the present work to study the onset

and temporal development of fluid dynamic instabilities during spin

down in a cylinder.

Governing Equations and Boundary Conditions

The calculations employ a finite-difference analog of the unsteady

axisymmetric Navier-Stokes equations formulated in cylindrical

coordinates (r,e,z). The equations are expressed in terms of *,c and y,

instead of velocity and pressure in order to simplify the numerical

procedure. In dimensionless variables the governing equations are

2*- r/r o r,. (1)

;t + UCr + WC - uC/r - 2yyz/r3 - (1/Re)Ev72  + ;r/r - c/r2], (2)

Yt +  r + wyz (1/Re) V2y - Yr/rj; (3)

where the subscripts denote partial differentiation and

Re = Qa2/v, (4)

72 = a2 /ar 2 + 32/ Z2, (5)

y a rv, (6)

- uz - wr ,  (7)

with the axisymmetric stream function defined so that

u a- z/r and w a - *r /r. (8)

The Ekman number based on half-height is related to Re by
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Ek - V/(nc2) - l/(c 2Re). (9)

The stream function-vorticity-circulation formulation yields an elliptic

POE, Eq. (1), and two parabolic PDEs, Eqs. (2) and (3), which are

coupled. The boundary conditions impose additional coupling between

and c.

The nondimensional variables used here are defined by

r = R/a, z = Z/a, t = T,

u = U/(na), v - V/(Qa), w = W/(Qa), (10)

* = v/(na 3), y * r/(Wa2 ), .=/n.

The initial conditions for spin-up are

P = C 0, y aa ir2/Sl for t <4 0. (11)

Computational efficiency and resolution are improved by employing a

symmetry boundary condition at the cylinder mid-plane, z - a. This

effectively halves the number of grid points required. The boundary

conditions for t > 0 are

*.(t, 0, z) - y(t, 0, z) - C(t, 0, z) = 0, (12)

41(t, 1, Z) 0, y(t, 1, Z) = 1, ¢(t, 1, Z) - 4rr(t, i, z), (13)

*(t, r, 0) = 0, y(t, r, 0) = r2, ;(t, r, 0) = 4z (t, r, 0)/r, (14)zz

*(t, r, a) - c(t, r, a) a 0, yz(t, r, 0) 0. (15)

The boundary conditions for vorticity along the sidewall and endwall,

Eqs. (13) and (14), are derived from Eqs. (7) and (8) by imposing the

no-slip conditions for velocity. Fig. 1 illustrates the coordinate

system and boundaries used in the numerical calculations.
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During spin-up there are viscous regions near the sidewall and

endwalls which become very thin as Re becomes larger than 1000 or so,

necessitating a fine grid to resolve the boundary-layer type phenomena

along these walls. Analytical coordinate transformations12

Sln[(b + r)/(b - r)] 16" In[{b + 1)/(b - I)(16)

n = 1 + In[(T + z/ - I)/(E- z/,a + 1) , (17)
lnC(E. 1)/CE- 1))

with b = (1 - d)"1 and 0 (1 - e) " are used to optimize the grid point

placement and transform a nonuniform grid in the physical plane into an

equally-spaced grid in the computational plane. Fig. 2 shows a typical

grid point distribution in the physical plane produced with Eqs. (16)

and (17). The complete set of transformed equations and boundary

conditions is given in Ref. 10.

Discussion of Numerical Procedure

Several methods have been used by previous investigators to solve

the stream function-vorticity form of the Navier-Stokes equations.

Perhaps the most popular technique is to combine the alternating-

direction implicit (ADI) method 13 for the c and y-equations with either

an AD! or successive over-relaxation (SOR) method14 for the *-equation.

Briley7 ,8 applied the former approach to spin-up in a cylinder. In the

present approach a semi-implicit PCMI method is used to solve the c and

y-equations and the Gauss-Seidel methods is used to solve the *-equation.

The PCM technique was adopted for this unsteady problem because

the present author's prior experience1 s showed the method to be reliable
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and easy to implement. Rubin and Lin 4 originally used the PCMI

technique to investigate steady hypersonic viscous flow along a right-

angle corner, imposing a symmetry condition along the diagonal. This

resulted in the computation of large gradients in only one coordinate

direction, which they treated implicitly. In the present application

there are large gradients in two coordinate directions and some of the

advantages of the PCMI technique are compromised. In adapting this

technique to the present problem we chose to treat the radial direction

implicitly to maintain consistencyfwith previous work2 based on the

Wedemeyer spin-up model. This choice was advantageous in studying the

early-time flow development along the sidewall and in applying the

symmetry boundary conditions at z = . It leads, however, to an

explicit time step restriction, to be discussed, that is governed by

the large axial gradients in the endwall boundary layer.

In the present method all flow gradients in the z-direction are

approximated by prediction and subsequent correction in this time-

iterative technique. This approach eliminates cross coupling of grid

points, thus reducing the size of the inversion matrices and decreasing

computer time. The iteration procedure allows the boundary vorticity

to converge and also allows the nonlinear terms to be approximated and

then corrected, giving a more accurate simulation of the nonlinear

coupling between equations.

Central difference formulae are used for all spatial derivatives

at interior points, avoiding false-diffusion effects introduced by upwind

difference schemes. Temporal derivatives are approximated by second-

order accurate one-sided difference formulae involving three time levels.
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The truncation errors for interior points are of O(At 2 &02, An2)

Ref. 10 gives the complete set of finite-difference equations used in

this work, together with a discussion of the manner in which the boundary

conditions were implemented. It should be noted that a first-order form

for the wall vorticity boundary conditions1 o was used to obtain the

results discussed in this paper. Based on test calculations for a 1

and Re = 1000, the numerical technique appears to be fully compatible

with second-order accurate wall vorticity expressions.

The numerical procedure is applied by using the PCM method to

solve the difference equations for ym+l and cm+l using the m-iterate

values to form the coefficients of the nonlinear terms; where m denotes

the y and c-iteration level. The calculations start along the row of

points adjacent to the midplane and work downward toward the endwall

(see Fig. 2). The derivatives in the $-direction are treated implicitly,

requiring the solution of a tridiagonal system of equations along each

successive row.

At the end of each m-iterative cycle the *-difference equation is

Isolved iteratively using the Gauss-Seidel method; the SOR method was

I used for test calculations but it did not speed up the overall procedure.

The solution for * is obtained by starting at the interior grid point

adjacent to 0 a n z 0 and sweeping first in a and then n, making use of

updated values as soon as they become available. Convergence of * is

assumed when

I n+ l  I t1  
(18)

at every grid point, where n is the *-iteratlon level. Convergence is

118

2(



typically achieved in 2-3 n-iterations with e 1 x 10-7. The converged

values for * are used to update the boundary values for € and repeat the

iteration process for y and c. The iteration process is assumed to

converge when both

Iym+l - ymI < C2, (19)

Cm' ' - ml 4 e3  (20)

at every grid point. It typically requires 2-3 m-iterations to satisfy

Eqs.(19) and (20) with e2 - E3 = 1 x 10-1; at very early time 5-10

iterations are needed due to the severe flow unsteadiness caused by the

impulsive start and the subsequent inaccuracy of the extrapolated

guesses.

Stability Properties of Numerical Procedure

Rubin and Lin4 have analyzed the interior point stability of the

PMI method for a linear model equation that approximates the unsteady

two-dimensional Navier-Stokes equations. Their analysis shows that if

Iteration is not used the present PCMI technique has a stability

restriction of the form At < Kn 2 , because the method is explicit in n;

AB does not appear because B is treated implicitly. On the basis of

their results for the case of repeated iteration, we conclude that the

appropriate stability criterion for the present iterative scheme is

I An (2
At MInzz/Re + 1Ornz (/r2

taken over all interior grid points. The term nzz/Re results from the

coordinate transformation in z; it vanishes if an equally-spaced grid is

used in the axial direction.
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Since the results of such a linear stability analysis are

inconclusive, we carried out test calculations to determine the

validity of Eq. (21). These studies were conducted for a a 1 and

Re - 1000, 9742 and 50,000, using three combinations of grid sizes for

each Re and several different transformation parameter combinations.

The results show that numerical stability is always achieved when Eq.

(21) is satisfied, even when equally-spaced points are used. In limited

cases numerical stability is achieved with At as large as 1.5 times

the critical value predicted by Eq. (21). In general, the numerical

studies confirm that the linear theory provides good guidance for the

spin-up problem. Eq. (21) was satisfied at each time step in the

illustrative examples to be discussed next.

Comparison with Previous Work

The present method has been used to treat the problems of spin-up

from rest and spin-up from an initial state of solid-body rotation. We

compare our results with those of Warn-Varnas et al .6 for the latter

problem. They used an ADI technique coupled with a scheme developed by

Williams16 to solve the velocity-pressure form of the Navier-Stokes

equations. In their calculations they differenced the governing

equations directly on a stretched grid instead of transforming to new

coordinates. Their computations were verified by measurements taken

with a laser doppler velocimeter (LDV) system.

Fig. 3 shows a comparison of the present calculations with results

from Ref. 6 (their Fig. 13b) in terms of their quantity called "zonal

velocity" (ordinate in Fig. 3), which is a scaled non-dimensional
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angular velocity. The results are shown at r = 0.25 on the cylinder

symmetry plane for a case with a = 0.3182, Re = 7334 and nt * 0.8182n.

The inertial oscillations excited by the sudden increase in cylinder

rotation rate are clearly predicted in both computations and are in

fairly good agreement with experimental measurements. Both of these

numerical results appear to be within the experimental uncertainty

associated with these data, according to the error analysis presented

in Ref. 6. Comparisons fc" several other positions in the cylinder

(not shown here) give similar agreement for both the decay of the zonal

velocity and the amplitudes and phases of the inertial oscillations.

The computation time and number of grid points used to obtain the

numerical results in Ref. 6 are not stated. The PCMI calculations used

a stretched (d = 0.3, e = 0.1) 41 x 21 (r-z) grid with 600 time steps

(at - 0.063). Approximately 2 to 3 m-iterations, each consisting of 2-3

n-iterations, were required per time step to satisfy Eqs. (18) - (20).

The complete simulation represented in Fig. 3 required 52s of CPU time

on a CDC 7600 computer.

The problem of spin-up from rest has been emphasized in the present

work because of its application to liquid-filled projectiles. This

problem is nonlinear; the previous problem can be linearized for small

n - nt" Comparisons have been made with computations of Brlley7 and

Briley and Walls 8 for spin-up from rest. They studied this problem for

low Re using the ADI technique to solve the stream function-vorticity

form of the Navier-Stokes equations. Fig. 4 compares values of

rotational volume flow rate,
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- -a

(/) f0 LO V dzdr, (22)

for two cases. The quantity Q can be used to obtain a measure of the

spin-up time. Briley and Walls used a uniform grid that became re-

strictive at moderate Re due to the small thickness of the endwall

boundary layers; they obtained results for Re as large as 1167. Our

calculations appear to be in good agreement with all of their results

for spin-up. Neitzel's comparisons for spin-down11 , however, showed

only qualitative agreement with Briley and Walls' results for Re = 1167.

The observed differences are thought to be due to grid size effects.

The present computations have also been compared with LDV

measurements taken by Watkins and Hussey 9 . Fig. 5 presents comparisons

of azimuthal velocity along the cylinder mid-plane at four instants

during spin-up for a case with a - 1.515, Re a 3076. Fig. 6 shows

similar comparisons for a a 1, Re - 9741.6. The size of the symbols

used to plot the experimental data in Figs. 5 and 6 approximately

represents the size of the error bars that should be attached to these

data. The calculations in Fig. 6 used a 21 x 21 grid with d a e a 0.10

and required 2745 time steps with at = 0.10. Approximately 2 m-itera-

tions, each with 3 n-iterations, were required to satisfy Eqs (18) -

(20), for a total CPU time of 69s.

The results shown in Figs. 4, 5 and 6 are representative of the

"core" flow in Wedemeyer's model of spin-up from rest and they can be

predicted fairly well using that model; the accuracy of the prediction

increases as Re increases. However, Wedemeyer's model says very little
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about the flow in the corner region, along the sidewall and in the

Ekman layers. These phenomena will be discussed next.

Transient Phenomena during Spin-Up from Rest

The PCMI procedure has been used to study inertial oscillations

and temporary regions of reversed secondary flow that develop and then

subsequently decay during the initial stages of spin-up from rest. In

a typical case1° with a - 0.3182 and Re = 7334 weak inertial oscillations

develop in the flow adjacent to the sidewall limediately upon spin-up,

decay in amplitude during the next few rotations and become so weak that

they cannot be detected at all for t > 40. The phenomenon observed here

is similar to that indicated in Fig. 3, except that in this case the

inertial oscillations are weaker and they only occur in the rotating

fluid adjacent to the sidewall. The non-rotating fluid in the interior,

for instance along the mid-plane at r - 0.25 and 0 < t • 40, cannot

support such oscillations.

A second type of transient phenomena that has been observed in

these calculations is the formation of temporary reversed flow regions

along the sidewall. These regions form during the first few rotations

after the impulsive start and have been observed over the parameter

range 1 < m •4.3 and 1000 < Re < 50,000. Typical results for a -1,

Re - 9741.6 are shown in Figs. 7, 8 and 9 to illustrate the reversed

flow formation and decay. Each figure shows instantaneous streamlines

in one-fourth of the meridional plane, the cylinder midplane being the

top boundary and the sidewall being the right boundary. The results

were obtained with d e- 0.1 and At a 0.05 using a 41 x 41 grid. The

123

........................................... , , --



streamline contour interval is 4 0.0004 for each figure with the wall

value set to zero. The plots indicate that a counter-clockwise

meridional flow develops almost immediately after the impulsive start

with no reversed flow regions present until approximately t = 6. Fig. 7

shows that a small reversed (clockwise) flow region has formed near the

corner by t = 6 as indicated by the small closed contour. By t - 13 a

second region forms, slightly higher up the sidewall from the one in

Fig. 7. By t = 20, Fig. 8, there are four reversed flow regions present.

During the next half rotation or so these reversed flow regions

"collapse", or disappear, as indicated in Fig. 9 for t = 24. They do

not redevelop for t > 24 and the rest of the spin-up process proceeds in

a manner similar to that predicted by the Wedemeyer model.

The reversed flow regions do not develop in calculations for a = 1,

Re ( 1000, probably because of the larger amount of viscous dissipation.

At higher Re there is less viscous dissipation present and inertial

effects become more pronounced. Fluid particles near the endwalls are

accelerated radially outward in a spiral motion as the Ekman layer

4 develops. These particles overshoot their "equilibrium radial position"

before they turn upward from the edge of the Ekman layer near the

corner. The reversed flow regions that develop along the sidewall are

apparently linked to the inertial oscillations developed as swirling

fluid particles travel upward along the sidewall and begin to migrate

radially inward.

The calculations predict that as Re increases, both the amplitude

of the Inertial oscillations and the complexity of the initial flow in

the corner region increases. Typical results for z - 1 and Re u 50,000
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show that three very small reversed flow regions develop in the corner

region by t = 15. A transformed 41 x 81 grid could not sufficiently

resolve the fine scales of this motion in the corner. Similar

calculations for a = 1, Re = 100,000 developed a numerical instability

at t = 4.6 due to the extreme severity of the local oscillations in the

corner. This result may indicate the development of a physical

instability at this high Reynolds number.

Grid convergence studies have been carried out for the case depicted

in Figs. 6-9 to determine the sensitivity of the results to grid size.

Grids of 11 x 11, 21 x 21 and 41 x 41 were used with d = e = 0.10 and

&t - 0.20, 0.10 and 0.05, respectively. The results show that the

predicted azimuthal velocity profiles are relatively insensitive to

grid size. The 41 x 41 grid results are very similar to those sHown in

Fig. 6 for the 21 x 21 grid; typically v differs by less than 0.010

between the two cases, with a maximum difference of 0.027 occurring at

early time. The comparisons do show, however, that the number of

reversed flow regions formed and their times of appearance and

disappearance are sensitive to grid size over this range of sizes. The

11 x 11 and 21 x 21 grids are so coarse that only the largest reversed

flow region in Fig. 8 is resolved; the smaller ones in Fig. 8 and the

single one in Fig. 7 are not resolved at all. All three calculations,

however, predict the absence of reversed flow for t > 24. It is clear

from these limited results that much finer grids near the sidewall are

needed to carry out quantitative studies of the transient reversed flow

regions.

125

- .- '-.t



Ekman Boundary Layer

The Ekman layer development at early time and its role in the

subsequent spin-up process has been examined in some detail using the

present procedure. Fig. 10 shows a typical computed radial velocity

profile in the Ekman layer at r = 0.76 and t = 8.2 for a - 1,

Re 9741.6. This profile was obtained with a 21 x 21 grid, and d - 0.10,

e 0.02. This grid was stretched in z to cluster almost half of the

grid points into the Ekman layer. The predicted radial velocity profile

is very similar to the one obtained by Rogers and Lance27 for the steady

laminar boundary layer formed on an infinite rotating disk with a

non-rotating outer flow (the Von Karman problem). The small differences

in Fig. 10 are due to the fact that u does not asymptotically approach

zero at the edge of the Ekman layer during spin-up in a finite

cylinder. The Rogers and Lance calculation, on the other hand, imposes

this asymptotic behavior as a boundary condition.

Results similar to those shown in Fig. 10 have been used to

quantify the Ekman layer radial mass flow rate and assess "compatibility

conditions" employed in the Wedemeyer model to couple the Ekman layer

and interior, or core, flows. These results show that the Ekman layer

is formed within approximately the first cylinder rotation, t = 27;

thereafter, the Ekman layer radial mass flow rate at a given r

monotonically decreases as t increases. This monotonic behavior of the

mass flow rate is an important observation from the present work, since

it indicates that non-monotonic compatibility conditions, used by several

authors9 ,18'20 in conjunction with Wedemeyer's model, are unrealistic

approximations to the actual flow. The complete set of numerical
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results from these studies has been used to develop a new monotonic

compatibility condition2 0.

Conclusions

A predictor-corrector multiple-iteration method has been combined

with the Gauss-Seidel iteration technique to produce an effective

numerical procedure for solving the unsteady Navier-Stokes equations.

Test calculations for spin-up in a cylinder were shown to be in good

agreement with previous calculations and experimental measurements.

Computations carried out for 0.5 4 a 4 4.4 and 205 < Re 4 50,000 showed

that coordinate transformations could be used to simultaneously resolve

details of both the interior and boundary layer flows using a moderate

number of grid points. These calculations demonstrated the presence

of inertial oscillations and temporary reversed flow regions along the

sidewall during spin-up from rest and quantified some aspects of the

flow In the endwall Ekman layers.
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FOURIER TRANSFORMA EVALUATION

J. Barkley Rosser

University of Wisconsin - Madison
Mathumatics Research Center

Madison, Wisconsin 53706

ABSTRACT. Methods have been given for computing Fourier transforms
which are particularly efficient at chosen discrete values of the spectrum.
Alternative methods based on Fourier series are presented for calculating
the transform at additional values of the spectrum.

1. STATEMENT OF THE PROBLEM. The Fourier transform of x(t) is
defined by

S(f) x(t)e - 27rjftdt,

where j = '. For most cases that arise in practical problems, Jx(t) I
falls off fairly rapidly to zero as t - - and as t - - . So, for

suitable a and b , one can approximate S(f) by 9(f), where

S(f) = 1b x(t)e-27jft dt. (1.2)
-a

In many cases that actually occur, x(t) describes a burst of information,
and one has x(t) = 0 for t < -a or for t > b. In such case, one has
exactly

s(f) - fb x(t)e-2Tjftdt. (1.3)

-a
A translation of the origin gives from (1.2)

2jfa fa+b -2jfu
S(f)= e x(u-a)e du. (1.4)

0
A change of scale gives

S(g) S (--- f x((a+b)v-a)e.5)
a+b 0

2. USE OF FOURIER SERIES. The analysis of Section 1 shows that,
for many practical problems, and subject to a slight redefinition of x(t)
and S(f) by a translation and a change of scale, the problem of approxi-
mating a Fourier transform can be reduced to evaluating

S(f) = fl x(t)e-2 jftdt ( (2.1)

0
For functions x(t) arising in practical problems, it will usually be

the case that x(t) is of bounded variation. V'e will assume this to be
the case. If we consider separately the real and imaginary parts of x(t),
and apply the analysis at the top of page 164 of Whittaker and Watson Ell,
we conclude that

2r~jnt

x(t) an e (2.2)

Sponsored by the United States Army under Contri.ct No. DMG29-75-C-0024.
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The'series on the right converges for 0 < t 1 1 to the value

*{x(t+O) + x(t-O)} (2.3)

for t - 0 or t = 1 it converges to the value

I{x(0+) + x(1-0)}. (2.4)

Also, by the analysis at the bottom of page 172 of Whittaker and Watson [1],
the value of lan| goes to zero of the order of 1/min when n goes to
plus or minus infinity.

It is permissible to substitute (2.2) into (2.1) and integrate term by
term. There results

1 Y an (e2nj (n-f) -2)
S (f 1' - 1) (2.5)

2 n-w n-f

Since the lanj go to zero of the order of 1/ni, the series on the right
converges absolutely. If f approaches an integer m , all terms on the
right of (2.5) approach zero except for the one with n = m , and we get

S(m) = a . (2.6)
m

If we put m for f in (2.1), we get

S(m) = am 1 x(t) e-2rmtdt. (2.7)
0

It thus appears that we have to start by c.lculating S(m) for quite
a number of integers m. We will discuss how to do this in Sections 3 and 4.
For the moment, assume that numerical estimates for enough of the am are
available. Then estimates for S(f) can be obtained by use of (2.5).

I One can rewrite (2.5) as

2-fj (m-f) a
S(f) - n ' (2.8)

.1 where m is some integer, usually taken near t: . If f is very close to

an integer m , there would be appreciable cancellation in calculating the
factor in front of the sumnation on the right oi (2.8). We can remedy this
by expanding the exponential into a series. Thc:n the factor takes the form

2 1i (-f) + (21 (m-f))+ ... . (2.9)

One would have recourse to this only if lu-fl is quite small, so that the
convergence in (2.9) would be very fast.

Suppose that for some r with 0 < r < 1 we wish to calculate S(m+r)
for many integers m . By (2.8), we have

-21rjr a
S(r) - n (2. 10)

21 a n-r (2.1-)
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-2 , jr a
S(l+r)2j (n-l-r) (n-r) (2.11)

-271jr 2a
S(m+l+r)-2S(mr)S(m-- ]r) 2nj-I I n (n-r-I-)2nj n-m--r)(n-m-r) (n-m~l-r)

(2.12)

We have reasonably rapid convergence on the right of (2.10), faster
convergence on the right of (2.11), and extremely rapid convergence on the
right of (2.12). So we can rapidly calculate the right of (2.12) for many
m's. But since the left side of (2.12) is the second central difference of
the S(m+r), we quickly calculate the first differences from S(l+r) - S(r)
by addition and subtraction. Having the first differences, we then get
S(m+r) from S(r) by addition and subtraction.

As a practical calculating procedure, note that the coefficients of the
a on the right side of (2.12) have the formn

2
2 (2.13)(M-l-r) (M-r) (M+l-r)

for various values of M . These fall off rapidly in size as IMI gets
large. If about two decimals of accuracy is desired, it would suffice to
calculate and store values of (2.13) from about M = -10 to M = 11. Then,
for each value of m , 22 multiplications and 21 additions would evaluate the
sum on the right side of (2.12). As noted, this gives second differences,
from which first differences and then the values of S(m+r) can be calculated
by additions and subtractions.

If more accuracy is desired one could use more values of M . However,
it might be better to go to higher differences; this latter cannot be carried
too far, since the numerators begin to increase at a distressing rate. In a
later section, we will explain quite a different technique to get more accuracy.

If values of S(m+r) are required for a very large number of integer
values -f m , it might be efficient to use the Fast Fourier Transform. An
explanation how to do this will be given later.

3. ESTIMTION OF THE am . Obviously one has to have some sort of
information about x(t) if one is to make any progress. Sometimes one is
lucky enough to have a formula for x(t), or some algorithm by which x(t) cen
be estimated for each given t . In a practical problem, one may have only
experimentally measured values for x(t), at isolated values of t . Let us
assume that these values of t are equally spaced from 0 to i . That is,
one has measured (or can calculate) values of

X Nfor k = 0,1,2#..N.

Then one can approximate am from (2.7) by one of a number of approximate
quadrature rules; see Abramowitz and Stegun (3], page 885 ff. The simplest
useful approximation is by the trapezoidal rule. For (2.7) this gives

1- e-21rjmk/N

S(m) - a x ,(O) + x(1) 1 + x [ (1) e (3A)m 2N k=l

Because of formulas like (2.5) and (2.8), we wish to know am for
many values of m , both po!;itive and negative. This could be quite a heavy
calculation. If N happens to be a power of 2 , or the product of a number
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of small primes, one can rewrite (3.1) so that one can abridge the calcula-
tion very considerably by use of the Fast Fourier Transform. Simply re-
define x(O) to be

x(O) replaced by J(x(O) + x(l)). (3.2)

Then (3.1) can be rewritten as
1N-l )e2 m/

S(m) =a 2! .k2jmk (33)
m N X(N e(33k=0

We can use the Fast Fourier Transform to get a reasonably efficient calcula-
tion of the right side of (3.3) for -N/2 < m < (N/2) - 1. We will shortly
discuss how good an approximation this gives for am for -N/2 < m < (N/2) - 1.

The reader probably has a favorite version of the Fast Fourier Transform.
If not, one can consult the original paper on the subject, namely Cooley and
Tukey (5]. Some people like Brigham [6]. A particularly good explanation is
given in Conte and de Boor [4]; be sure to get the third edition, as the Fast
Fourier Transform does not appear in the first two editions.

If one wishes am for more values of m , note that the right side of
(3.3) is a periodic function of m , with period N . As m reaches and
passes N/2, the right side of (3.3) merely begins to repeat the values for m
near -N/2. Almost certainly, the am do not behave this way. So for
Iml > N/2, (3.3) must be a poorer and poorer approximation for am as Iml
increases.

We spoke earlier of estimating S(m+r), whure 0 < r < 1 , for a large
number of values of m . If we put m+r for ri in (3.3), we get

a1N-1 2jkN 2rm/
S(m+r) x - N e le -

. (3.4)

This holds also for r = 0, of course. Use of the Fast Fourier Transform will
give values of the right side of (3.4) for -N/2 < m < (N/2) - 1.

By the formula for the error in the trapezoidal rule (see Abramowitz and
Stegun [3], Formula 25.4.2 on page 885), the error for (3.4) is

- -- ---- , (3.5)~12N 2

where

f(t) - x(t)e - 2 j (m+ r ) t  (3.6)

and & is a number between 0 and 1 , providing x(t) is twice differenti-
able. One term in f"() would be

(27r(m+r)) x(g)e

if iml is near N/2, the contribution to the error from this term alone
could exceed the value of a itself.m

In other words, use of (3.1), (3.3), or (3.4) to get an approximation for
S(m+r) is futile unless Im+rJ is somewhat small compared to N
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Whether use of (3.4) involves less calculation than use of (2.10), (2.11),
and (2.12) depends on how many values of m one has to deal with.

4. THE POSSIBILITY OF BETTER USTIMATES FOR THE am . In the previous
section, we discussed the approximation that one can get by the trapezoidal rule.
If N is large arid we need to know am only for m's of modest size, the
trapezoidal rule does fairly well. Suppose we have to deal with larger m's,
or the trapezoidal rule does not do well enough. There are other quadrature
rules in Abramowitz and Stegun (3]. A popular one is Simpson's rule. This
works only if x(t) is four times differentiable. Also, N has to be even.
Then Simpson's rule takes the form

1
S(m) = a )- x()+ x(1)}m 6R

1 R- x( )e - 2 j mk / R  
(4.1)

+ 3R k=l R

2 R-1 2k+l e-27ijm(2k+l)/2R
+ -g- (- Rk=O

where we have taken R = N/2. As before, if we redefine x(O) to be
jtx(O) + x(l)}, we get the relation

S (m) a R 1 xk. -2nrjmk/R
m 3R k-k=R- R

2e- 'Tm/R 2k+l -2njmk/R
3R Z x( 2R= ) (4.2)i " k=0

Each of the summations on the right can be evaluated fairly efficiently by
means of the Fast Fourier Transform for -R/2 < m < (R/2) - 1, after which one
can reconstitute the approximation for am . This gives am only in the
range -N/4 < m < (N/4) - 1. Since each summation on the right of (4.2) is
periodic with period R , one can extend (4.2) to other values of m . How
far (4.2) remains a useful approximation is another question.

By Abramowitz and Stegun [31, Formula 25.4.6 on page 886, the error in
(4.1) or (4.2) is

• if(4)

f M (4.3)

180N
4

where

f(t) = x(t)e- 2 jmt (4.4)

and & is a number between 0 and 1 . This is likely appreciably better
than the error for the trapezoidal rule, especially for small Iml. Even for
Iml near N/4, the error could be only a few percent of the value of a .
However, as Iml increases, the error becomes too large to tolerate.
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If x(t) is six times differentiable and N iz divisible by 4 , one
can use Bode's rule. This gives

SW = a - ({x (0) + x (1)}
90S

Si1 k -27rjmk/S
+14 k x () e -

k=l.

S-1 2k+l -2jm(2k+l)/2S
+ 12 1 x(- ) e(

k=O

+ 3 [ 2k+l" e-2wim (2k+l)/4}32 =0 x t-ji-j), (4.5)

where we have taken S - N/4. As before, if we redefine x(0) to be
E{x(0) + x(1)}, we get the relation

S-1- Z
S(m) = am  45S k=0

S16e 4k+l e-2wjmk/S
+ 45S

2e - rjm/ S S-l -2ffjmk/S

16e-3j/2S S-1 4k+3
+ 45S )e - 2 7jm k/ S  (4.6)

45S 4S

Each of the summations on the right can be evaluated fairly efficiently by
means of the Fast Fourier Transform for -S/2 < m < (S/2) - 1 , after which
one can reconstitute the approximation for am . This gives am only in the
range -N/8 < m < (N/8) - 1 . Since each summation on the right of (4.6) is
periodic with period S , one can extend (4.6) to other values of m . How
far (4.6) remains a useful approximation is another question.

By Abramowitz and Stegun [3], Formula 25.4.14 on page 886, the error in
(4.5) or (4.6) is

(6) (4.7)

945N
6

where f(t) is given by (4.4) and & is a number between 0 and 1 . In
the range -N/8 < m < (N/B) - 1 , this is likely appreciably better than
Simpson's rule.

In Hope (21, it is proposed to use a Gaussian type quadrature formula;
see Abramowitz and Stegun [3), Formulas 25.4.29 and 25.4.30 on page 887.
This requires that x(t) have many derivatives. It also requires knowledge
of x(t) at other than regularly spaced points; if a formula is known for
x(t) one can manage this, but if x(t) is determined at isolated points by
measurement the matter is hopeless.
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In Hope [2), the procedure is applied for the case that

sin(200iit 4 100a2t) tor 0 < t < 1
X (t) 4

0 otherwise.

For the method of Hope [2] to work, x(t) had to be 64 times differentiable
A for 0 e t < 1 , and had to have computable values at very strange values of t.

For the x(t) given above, these conditions are satisfied.

Another difficulty with the method of Hope J2] is that the error increases
very fast as m increases. Thus, in Figure 2 of Hope [2), there is a plot of
the error squared as a function of m (which is called f in Figure 2). For
0 < f < 150, the relative error squared is less than 10- 8. But as f goes
from 1 0 to 250, the relative error squared increases from less than 10-8
to about 10- 5 . It is good that the graph stopped at m = 250. On the whole,
we can see very little to recommend in the use of Gaussian type quadrature
formulas for the present purpose.

We might remark in passing that Hope [2] is very carelessly written.

(1) It is stated that the formula (2) is a trapezoidal rule approximation
for (1). If one takes Af = 1 in (2), one gets our (3.3). This is a trapezoidal
rule only by virtue of the replacement (3.2), which is not used in Hope [2].

(2) There is a J missing in front of the right side of (6) of Hope [2].

(3) In Figure 2 of Hope [2], a blob near the top of Figure 2 purports to
show the error squired in (2) of Hope (2] (which is essentially our (3.3)) when
N = 4096. Because the blob is near the top of the figure, this is supposed to
show that a trapezoidal rule using 4096 evaluations is much poorer than the
Gauss quadrature using only 1728 evaluations. The fact of the matter is that
the blob in question has nothing to do with the error squared of the trapezoidal
rule with N = 4096. For this latter, the normalized value3 of S0 of) - S(f) 2,
which the blob is supposed to represent, is actually about xlO -  all the way
from f = 0 to 250. This is so sm.il that it would have to be plotted below
the bottom line of the figure, and hence is much better than the Gaussian

approximation for almost half the values of f . Even the trapezoidal rule
with N = 1024 (that is, 1024 evaluations as against the 1728 evaluations of
Hope [2]) has ISo(f) - S(f) 12 running from a little below 10-6 at f = 0 up
to a little over 10-6 at f = 250, which is superior to the Gauss quadrature
at quite a number 3f values of f . Recall again that the f of Hope (2] is
our m

5. FURTHER ANALYSIS OF THE ERROR. Let N be an even integer. Define

* (N/2)-l e2njntX()=a n e . (5.1)

n=-N/2

That is, we truncate (2.2). Then it is easily verified that for m an integer
with -N/2 < m < N/2 we have exactly

I N-1 k* ) - 2 njm k / N "  
5 2m N N

k=O
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If , N is very large, then by (2.2), x (t) will be nearly equal to x(t),
so that the right side of (5.2) will be nearly equal to the right side of
(3.3), so that, if we remember to make the adjustment (3.2), (3.3) will give
a good approximation for a for -N/2 < m < N/2.m

If the an converge rapidly to zero, then x (t) will be a good
approximation to x(t) unless N is quite small. Then (3.3) will give a
good approximation for a. , and Simpson's rule or other improvements of (3.3)
will not be needed.

Naturally, we cannot make the an for x(t) converge to zero any more
rapidly than they actually do. However, we can introduce new functions
related to x(t) for which the an do converge to zero more rapidly; we
can then calculate S(f) in terms of these new functions. This will also
speed the convergence in formulas such as (2.5), (2.8), (2.10), (2.11), and
(2.12).

We note that

fle-tdt a (5.3)
0

Differentiating both sides twice with respect to a gives

11 t e'¢t dt -- -a (5.4)02 a,

and

fl t2 e-tdt = 2(1-e " )C )  2e - ' -  e-.o 3 2 - (5.5)
0 a C

Now define

,X(t) x(t) - t(x(1) - x(0)). (5.6)

Then by (5.4), we have

SM if) +(x~) x())( - -2wjf e-2ijf 57(21rf) 2 -f2j--2f-'

where

f() - (t) •-2vJft dt. (s.s)
0

Analgously to (2.2) and (2.5), we have

n a 2 ,jnt (5.9)
flm. n

(21r j (n-f) - 1)

- 2 n - n-f "(5.10)

Note first that by (5.6)

;(0) - ;(1) - x(O). (5.11)

144



Thus, in the approximation corresponding to (3.3) for am we do not need to
make the adjustment (3.2). More importantly, analogously to (2.7) we have

S(m) 1a ; /I x(t)e - 2 Tj m t dt. (5.12)
m o

If we integrate by parts in this, and use (5.11), we get

S- (t)-2jmt dt. (5.13)

Ifx' (t) is of bounded variation, which it is liable to be in any
practical case, then by the analysis at the bottom of page 172 of Whittakerand Watson (1], the integral on the right of (5.13) will go to zero of theorde of /m. So jam will go to zero of the order of 1/jm 2 . This

is faster convergence to zero than one could usually expect for the an .
As noted above, this improves the situation with regard to formulas analogous
to (2.5), (2.8), (2.10), (2.11), and (2.12).

Suppose that one can calculate reasonable approximations for the
derivatives of x(t) at t = 0 and t = 1, and that the second derivative of
x(t) has bounded variation. Then one can arrange for even faster convergence
of the coefficients to zero. We define

2
x(t) x(t) - Bt - Ct (5.14)

and choose B and C so that

x(O) = x(l) (5.15)

x'(0) = x'(1 . (5.16)

This we can do by taking

C = i{x'(1) - x'(0)} (5.17)

B = x(l) - x(0) - C. (5.18)

Then by (5.4) and (5.5), we get

-2njf -2ijf
S(f) = 5(f) 4 B{ 2 2 e- -f

(2njf)

2(l-e-2njf 2e-2?jf e-2 jf
(2rif) 3 (27rjf) 2. 2jf

I S(f) -- d t)e 2 j t d. (5.20)
where

0

We reason as before. Integrating by parts in the formula analogous
to (5.13), we get

am 2 2 " x(t)e - 2 j mt dt, (5.21)

from which we conclude that 1m' goes to zero of the order of 1/1M31.
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If it happens to be possible to calculate several derivatives of x(t)
at t - 0 and t - 1, one can carry this process still further by an obvious
generalization. Convergence of the various series will become so fast that
only a few terms of the series need be taken, thus obviating the need for use
of the Fast Fourier Transform.
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APPROXIMATIONS.FOR ZFG(s) F(s)]

Richard E. Dickson
US Army Missile Command

Redstone Arsenal, Alabama 35809

1. INTRODUCTION

Z-transforms have been primarily used in the design of sample
data control systems, but since its inception, it has been realized that
it also had application in the digital simulation of continuous systems
[1-3]. Some problems have been noted in applying z-transforms in
digital simulation [4] particularly in the p-oper incorporation of
nonzero initial conditions. These and other problems were addressed in
a preliminary study [5,6]; this paper will introduce some of those as
well as more recent developments.

Rather than a broad overview, only the fundamentals will be discussed
in this paper. Don't be misled, the technique has been applied to the
real-time digital portion of the hybrid simulation of a high spin rate air
defense missile [7].

If. PRELIMINARIES

f(t) f(nT)

F(s) F(z)

Figure 1. Time, sampled data, frequency, and sequency domains.

From the "sifting" property of the Dirac delta distribution,

f(nT) = f(t) 6(nT - t) dt (1)

The Laplace transform is defined to be

F(s) f(t) u(t) e- st dt (2)

The behavior for t < 0 is explicitly stated in the Heaviside unit step,U(t),

(0, t<'C0

u(t) = (3)1, t >O

Of course, the derivative of u(t) is 6(t).
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The z-transform will be defined as a "discrete" Laplace transform,

F~z) f I f(t) 6(nT - t) u~t) e-s dt(4

and from the "sifting" property of the Dirac delta, Equation (4)

becomes

F(z) f(nT) u(nT) esn (5)

Lettingt

se (6)

one has

F(z) I f(nT) z-n (7)

n-0

which is not unexpected.

The Raggazzini-Zadeh identity may be readily deduced from the
convolution properties of the Laplace transform, as follows:

n
Z[G(z) F(s)] = z u~nT) J g(t) (k7 t) u~t) f(nT - t) u(nT - t) dt

(8)

The "sifting" property of the Dirac delta Yields

00 n
Z[G(z) F(s)] znI g(kT) f(nT - kT) (9)

n-0 k-0

where the summation over k - 0 to n is discrete convolution. From the
Cauchy product of power series and the definition of the z-transform,
Equation (7),

Z[G(z) F(s)] - 0(z) F(z) ,(10)

the Raggazzini-Zadeh identity (1].

See Discussion of Reference 1; and Reference 2.
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Ill. MEAN VALUE CONVOLUTION

It is well known that

ZIG(s) F(s)1# G(z) F(z) (11)

and therein lies the difficulty in applying z-transforms to continuous
systems. A very useful relationship would be the solution of

ZIG(s) F(s)) z n u(nT) fg(t) u(t) f(nT-t) u(nT-t) dt

na-to -W 1 (12)

The mean value theorem of the integral calculus guarantees that there
is some 6k such that

kT+T

g(t) f(nT - t) dt - T g(kT + 6kT) f(nT - kT - 6kT) (13)

!k

and Equation (12) may be rewritten

k n-l

Z[G(s) f(s)] Z - n I T g(kT + 6kT) f(nT - kT - 6kT) (14)

n-O k=O

Since 6k is probably different for each k, it would be difficult to

proceed.

ASSUMING that

iI - k ,(s

that is, 5k is the same for all k, one has

n-l

Z[G(s) F(s)] = -n I T g(kT + 6T) f(nT - kT - 6T) . (16)
n-0 k-0

This Eqatio (2), n ks

This, Equation (16), almost the form of the. Cauchy product of power
series except that the sum on k is to n - 1 not n. Adding and subtracting
the necessary term and from the definition of the modified z-transform
[8] one has

Z(G(s) F(s)] T G(z,6) [F(z,-6) - f(-6T)] (17)
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The shifting theorem [8] allows further simplification,

Z(G(s) F(s)] = 1T G(z,6) F (z,(l - 6)) .(18)

Equations (17) and (18) will be referred to as mean value convolutions
(MvC).

IV. RU14GE-KUTTA CONVOLUTIONS

It is rather easy to generalize to other convolutions using
WYC (6]. Table 1 gives several convolutions based upon Runge-Kutta
integra tors.

TABLE 1. RUNGE-K.-TTA CONVOLUTIONS

Z[G(s) 'F(s)]

Z- T G~z)~

z -1T (1 -L Gz) F (z,l1) + (~-) G (z,ca) F (z, (1 a L)

z T(z) F() T Gz F(z [( () + (O~) F(z )](9

Z[G(s) F(s)] [ TG(z)F(z) -1 f() ) +)- g(0) F(z)J (20)
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and applying the shifting theorem, finally,

Z[G(s) F(s)] --- [G(z) F(z,l) + G(z,l) F(z)] (21)

which is the same as the second convolution in Table 1 for a = 1.
Halijak's TC has the most interesting property of having no fractional
shifts.

Unfortunately, this is countered by the poor behavior in integra-
tion of a sine wave by a trapezoidal integrator when the Shannon
Sampling Limit is approached [2,8]. For most applications this is not
a problem since one may sample at, say, ten times the Shannon Limit of
two samples per cycle, but in real-time simulation this may be a luxury
one cannot afford.

Choosing a - 2/3 yields good response for a sine wave input and
appears to be the Runge-Kutta second-order integrator of choice if
one is using classical numerical techniques for real-time simulation.

V. THE METHOD

Given the Raggazzini-Zadeh identity and the convolution
approximations, the method for developing recurrences may now be
presented.

Recalling Figure 1, one starts in the time domain with the
* differential equation with initial conditions, then transforms to the

Laplace domain bringing in the initial conditions explicitly using
~n-i

[f (n L~(t)] . sr(s) _I n- f(0) .(22)

Now z-transform by applying the Raggazzini-Zadeh identity or convo-
lution approximation as appropriate.

Finally, to transform to the sample data domain, coefficients of
like powers of z are equated.

A simple problem will illustrate the method. Consider the first-
order constant coefficient differential equation

,(t) + a x(t) - g(t) (23)

Transforming to the Laplace domain, one has, using Equation (22),

s X(s) - x(O) + a X(s) - G(s) (24)
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and solving for X(s),

X(s) G(s) + x(0) (25)
s+a

Taking the z-transform, one has,

x~z .zr G (s) I r x x(o) i
X z + ) (26)

From Equation (7) one may write

-0 + ()-2X(z) - x(0) z + x) z + x(2T) z + . . , (27)

therefore, one may apply the Raggazzini-Zadeh identity to the initial
condition term,

r x()/lZL - x() Z + (28)

The significance of Equation (28) cannot be overstressed since the
incorporation of nonzero initial conditions has been a major problem
in z-transforms. Since the Raggazzini-Zadeh identity is exact, the
initial conditions are incorporated exactly:

z x(O) i x(O) (29)
s +a J 1 - ze -a

The term with the forcing function, G(s), is another matter since

the Raggazzini-Zadeh identity would not apply. Using the second con-
volution in Table for a = 1, that is, trapezoidal convolution [9], one
has

-1 l -aT1
zL( i - \ - 1laT G(z,*) . - G-aT](z) (30)

-1 -aT
z T G(z,l) + e G(z) (31)

2 (i -l -aT (3

and applying the shifting theorem
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2_ (i -le a T

-1 -aT

X~z) = 2 + z e G(z) -g(O) (-(3

1 - Z - T e(32)

Multiplying both sides by (1 - z- e -a T ), and substituting the definition
of the z-transform, Equation (7),

(l-z-le - aT > . T TT) xn)znT) -n=1ze I T (~ g(nT) z -g(O) +x(O)

n0O nO (34)

Equating coefficients of like powers of z,

- x(0) x(O) (35-a)

.X(t) JaT X(O) [g(T) + e- aT g(,)] (35-b)z-l: x(nT) - eaT T) Tr + T

-n -aT T g aT )
z : x(nT) - e x(nT -T) g(nT) + e g(nT - T (35-c)

It is very important to note that the general recurrence DOES NOT APPLY

at n - 0. Note also that past values are decayed.

For convenience, the notation

x = x(nT) (36)

will be used in the following equations. Table 2 gives the recurrences
for the other convolutions in Table 1; References 5 and 6 contain details.

Again it is noted that past values are decayed. Of course, for
a - 0, the recurrences reduce to the well-known Runge-Kutta integra-
tions; the single integration is just a single pole at zero.

Other simple sample problems will be found in References 5 and 6.
Only the results for a forced damped oscillation will be presented here
for further emphasis of a point made earlier.
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TABLE 2. RECURRENCES FOR A SINGLE-POLE FILTER

) a 2

: 3 aT/3g+~Tg

T [ gnieTg

-a/ e 1 +eaT g 1L

T 3 JaT/J g 2T 2 -a/ g a

[3e) + 2~w ~ + e~t 9n 0 3)

th scn ste eol yield

[Gns) + 4s + T 2 w0 g (O + a
X6s n2+ (38)

5 +2~w~s2

For~ 3 a/ 3e2T3 a

a 9 (39)ngn

3 5
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and

w= (i-2) 1/2 w0 (4-0)

Equation (38) may be rewritten

X(s) = C(s) + (s + a) x(O) + ax(O) + (0) (41)

(s + a)
2 +w 2

the recurrence for a = 1 is [5,6]

x0  x0  (42-a)

-aT F(sin wTl -aT (sin wT\
: e [cos wT + a \w x 0 + e -w/ x0

+ e i go (42-b)
2 a k2a -atW )_

Sn (2 e - a T coswT) -e2aT + T aT sin wT
=+ c~ T n+l - n _w ) gn+1

(42-c)

Please note that the general recurrence, Equation (42-c) DOES NOT APPLY

for n - 0 or n = 1.

VI. CONCLUSIONS

Time and space do not permit a discussion of accuracy of the

method [5,6,10]. Table 3 presents a summary of current work.

TABLE 3. SUMMARY OF WORK

1 1
(s + a)

Taylor Series Fourier Series

Pole-Zero Pole-Residue
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The approach is to develop recurrence for poles other than the
single pole at zero, the single integrator.

The classical Runge-Kutta integrators were developed based upon
a truncated Taylor Series. For simulation of control systems, a
truncated Fourier Series, truncated at the Shannon Sampling Limit, seems
a more appropriate criterion since the problem is closed loop.

Normally, adjustments are made by pole-zero techniques which
introduce phase shifts. Lerner's filter [111 utilized pole-residues to
obtain constant time delay in the passband. Partial fraction expansiovs
were required.

Partial fractions lead to parallel processing [2] and may reduce
the start-up problem noted previously.

The adjustment of residues to improved performance is presently
being studied [10] as part of an FY '80 ILIR "high risk - high payoff"
effort. If the "payoff" is "high," a follow-on paper will be submitted.
In the interest of "closing the loop," "feedback" is solicited.

-I
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RADIX 6S/39 , A ROOT SEARCHING ALGORITEM

FOR ANALYTIC EQUATIONS

WALER 0. MERLAWD

BALLIC RESEARCH LABORATORYUSA APILADCXM

ABEDEEN PROVING GROUND,?MD

AB~rBACT

Given a circle in the complex plant, Radix 65/39 computes all roots of an

analytic equation along a chosen diameter.Each root is bracketed by two mono-

tone sequences (Landau sequences). The algorithm is implemented in Foaa

IV and pesently active on the PDP li1/7pies ofheprogmarera aae

on request.

1. MNTODUCTON

Let fWzbea bounddanalytic function orz x + ly in adisk. We eomIRF teuu-

tion f(z)-a for a given (complex) COMMt a. To datek there Is no algorithm *ha lexhvaWss

the disk in some fashionjocates all rou~deternmines their multiplcityor~equall impor=m

shows tha the equation has no roots In the given disk. Towards suh an idlawe develop hue

an algorithm ,called Radix 6S/39,tt accomplishes such an exhaustion along a chosen dim-

ter. It Is based on -,extension of an exclusion theorem by Lan W.h The name Radft 65/39

is mean to reflect the connotations or the Latn wwd radix which include also origin and

j source besides moot. We extended Landau's result of 6S years ago and his 1914 Paper can be

found in Volume 39 of BRL's Docher collection of Mathematicz! Reprints.
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Wlthout loss of generality ,wNe shall assume in the sequel that the equation is to be solved

in the uni diskU: < I and that f(z) i bounded them by 1. In 2, e state Lanau's

theoenm and prove its extension For a very short proof of Landau's theorem ,the reader is

referred to [3). In 3, the algorithm is established. A more detailed description geared to appli-

cations is contained in (4]. The general mathematical background is covered in Carathoodory's

Cambridge Tract 12].

2. EXTENSION OF LANDAU'S THEOREM

Landau's theorem can be stated as follow,

Theorem I (Landau's Exclusion Theorem). If f(z) is analytic in U: 1z I < 1 and bounded by 1,

then every solution C of the equation

f(z) - a d f(o), laI < I

satisfies the inequality

a-0 I ao-f(O) . (1)

The bound on C cannot be improved.

'Thus ,the theorem establishes a disk centered at the origin that is free of zeros of the equation

RDz - a - 0. In the following theorem a Landau disk is established for an arbiary poinlt zo U

that satisfies fKz 0 ) 0 a. This generalization is the key to the algorithra.

Theorem 2. Let f(z) be analytic and bounded by I in U.. If zo e U , f (o)'a the equation

f(z)-aa-f(0),has no solution in the disk

D (2)

For a proof jIet
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This function maps the unit disk univaenily onto itself. Hence ,the function

f(z)- f(z(t))-g(t)

satisfies g()<l, I eU, and g(O)-f(zo). Since f(zo)'a, it follows by Theorem I that if

the equation g(t) - a has the solution t - 7 ,then

1 1 , f(zo) "a

Therefore ,z(,r) is not contained in D. This completes the proof.

3. THE ALGORITHM

Letting

f(zo)-a

the disk D(CR) of (2) has center

" 'Zo(1-* 2)
i C" l_1zollk'

mdjus

R - k ioZI
1-Z012k2

and intersections with the diameter determined by zo

=z0 JzoJ+k
A0 - 12" 1+Irok

and

Bo- "O I"-ok "(4)

Definition. The algorithm is embodied in the sequences A, an{d n B) n defined for

n -1,2,... by
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A. - A,- " IA.- Ik(A.-I)

and

B. B.-I lB,.- 1j-k(B.. 4 ) (6)
1B,,_ I I-,Bl-" I(B- )

where A0 , Bo are given by (3) and (4).

Theorem 3. The algorithm is linearly convrgen.

We carry out the proof fbr { 4 I. A similar proof holds for ( B, B. Along the ray arg z 0 , IA, I

(A, being the right endpoint of an interval that is free of zeros) is clearly monotone non-

decreasing. Furthermore, ]A, 1<1 . Thus the limit lir A. I ,-o 1 exists. Since the itera-

tion function

I [xlk(x)6()- x +k(x) (x .. lxlJexp(iar~g), jx I<1)

is continuous, it follows from (5) that A - a exp(iargzo) satisfies the fixed point equation

-A jJ-1 (A)4 IA I 1+IA Ik(A)

Thus, either A - exp(iarpgo) or k(A) -0 . If A - expiargzo), then, by the construction of the

sequence {A, ,f) - a has no solution on the segment [ zo, AI . If k(A) - 0, then it fol-

. lows from the definition ofk thatf(A) -a , Le. that A is a root off(z) -a. This proves

that the algorithm is convergent. That it is linearly convergent follows from

,. _ _ - I- f'(A )-IA 12) > o.
N-" A-A,-lI - *1-)a 12

That the limit is positive follows from the lemma of Schwarz-Pick. This completes the proof of

the theorem.

4. MULTIPLE ROOTS

To each point on a given diameter belongs an "ascending! and "descending" sequence

(Landau sequence) according to 3. Consequently ,upper and lower bounds for the modulus of a

root A (that the diameter contains) can be obtained. However, since progress towards A is
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essenw y measured by

I,.-4- l--- SL JA-A,.-.jV'(A)I,

'staling" will occur in the neighborhood of a multiple mot. It is a remarkable feature of the

algorithm that Ostaling" due to a multiple root can be avoided by the following simple device

(loc l extraction of a root). Consker (for simplicity) the equation f(z) - 0 and suppos that

f(z) has a root of order ni - m a z - X.Thenf(z) has the repmsenation

f(z)-(Z-X "gz) ,g(X)P-o,

and any branch of

F(z) - (f(z))m

is analytic in Jz-J < p, where

P - min(p1  i -Nx)

and

p, -mi It-l

Therefore ,each of the m functions
~(u) -F(A-hpu) Jl <1

is analytic in U, boundedby 1 and hasatu - 0 a zero of oder 1. Batthismeanshat in the

neighborhood of z - A

k -Lfu)I

may be replaced by

Although m is not known beforehand, it can be determined inmractively from the local con-

vgernce behavior of the algorithm by successively setting n 2,3,...,.
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COMPUTATION AND APPLICATION OF SCHWARZ-CHRISTOFFEL TRANSFORMATIONS

Lloyd N. Trefethen
Computer Science Department

Stanford University
Stanford, California 94305

ABSTRACT. We discuss the problem of numerically computing Schwarz-Christoffel
transformations, which map the unit disk in the complex plane conformally onto the
interior of a polygon. A program is described which solves this problem reliably to
high accuracy for bounded or unbounded image polygons. Some applications to fluids
and electrical problems are given.

1. INTRODUCTION. Conformal mapping is a relatively underdeveloped area of
numerical analysis, but nevertheless a number of techniques are known. The best
understood problem in this area is the problem of mapping the unit disk D conform-
ally onto a simply connected region Q with a smooth boundary r , or vice versa.
Available techniques for this task include Theodorsen's method [7,8], Symm's method
[8,10], a method based on solving the Cauchy-Riemann equations [1], and a method
based on matching the behavior of a power series on r [3]. The majority of methods
(and the first two in this list) are based on integral equations. All of them begin
by discretizing the boundary F in some way. For a thorough discussion of numerical
conformal mapping as of 1964, see the book by Gaier 14).

Our concern here is the special case in which r is a polygon. This problem
differs from the first one in two important ways. First, the boundary can be fully
described by a finite set of parameters. Second, the derivative of the solution map
from D to S will necessarily have a singularity at each vertex. The presence of
these singularities suggests that methods designed for smooth boundaries are likely
to perform poorly when r is a polygon, unless special care is taken. This is in-
deed the case. On the other hand the finiteness of the geometry suggests that the
problem of mapping onto polygons is inherently simple and need not be subject to
discretization error. Both facts point to the desirability of using a specialized
technique for the conformal mapping of polygons.

Such a technique is the numerical implementation of the Schwarz-Christoffel
transformation, and our aim here is to sketch the methods with which we have dealt
with this problem. The result has been a computer program that accurately maps the
unit disk onto the interior of an arbitrary bounded or unbounded polygon. Several
innovations make the program substantially faster and more reliable than previous
programs for implementing the Schwarz-Christoffel transformation. A fuller presen-
tation may be found in [11] and [12].

For mixed problems that involve general regions whose boundaries contain sharp
corners, very little has been done. One promising approach, which has been imple-
mented by Davis [2], is based on a generalization of the Schwarz-Christoffel formula
to general regions.

2. THE SCMWARZ-CHRISTOFFEL TRANSFORMATION; FORMULATION OF THE PARAMETER
PROBLEM AS A NONLINEAR SYSTEM OF EQUATIONS. Let 0 be a region in the complex
w-plane bounded by a polygon P with N vertices wl, ... ,w . Some of the wk

may lie at w - - , but for simplicity we shall suppose here tat all are finite.
Let the external angle of P at wk be r8k. Then for any set of points zi ,
... ,zN in counterclockwise order on the circle Iz- 1 ,and for any complex
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constants C and wc , the Schwarz-Christoffel formula

w(z) - wc + C f (i - z'/zk) gk dz' (1)
0k-i

defines an analytic function of z in the unit disk with w(O) - wc The Schwarz-
Christoffel theorem asserts: given w. C 9 , there is some choice of C and {zk }
(let us call these points prevertices) such that (1) defines a conformal map (one-
to-one, nonvanishing derivative) of the unit disk D onto 0 .

The central question is, how can we find a correct set of values C and {zk } ?
This is known as the parameter problem. In general the solution can only be found
numerically. The method we have used - and this is an old idea - is to formulate
the problem as a system of nonlinear equations in the unknowns {zk} , lk<N-1.
(There is one free parameter in the conformal map, which we absorb by setting ZN
= I .) Now the correct prevertices {zk} will satisfy N-1 equations specifying
the lengths of the sides of P ,

Zk+l

Twk+l-wk = C T (l-z'fzj)-i dz' l-k.-N-1. (2)

Zk

These equations constitute the nonlinear system we attempt to solve numerically for
the unknowns zI , ... , ZN 1 * ( C is not treated as a primary unknown, but is re-
placed in (2) by the function of {zk} determined by

ZN
N

wN -w = C I (l-z'/zk)-ak dz' ) (3)C Jk-i
0

It can be shown that any set of prevertices {zk} that satisfies (2) defines a
solution of the Schwarz-Christoffel mapping problem, and that there is exactly one
such solution set.

The unknowns {zk} are not arbitrary complex numbers: they all lie on IzI 1
and they lie in counterclockwise order. We must impose these two constraints in
the process of seeking the solution of the parameter problem. First, it is natural
to work not with zk but with its (real) argument,

Ok - arg z k , 0 ek < 2 . (4)

This eliminates the first constraint. Not so obvious but also important, it turns
out that a second change of variables can eliminate the constraints 6k < 6k+l "
We define

Ok - ek_ 1  - -
Yk log k , 1 < k1 <N-I (5)
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(with 00 eN ), and now it is easy to see that there is a one-to-one correspondence
between arbitrary sets of real numbers Yl ... , YPJN- and sets of real numbers
61, ... , ON- constrained by Ok < Ok+l

This means of eliminating constraints is a trick, but its effect is to make (2)
much easier to solve numerically. In fact, it turns out that (5) also leads to a
formulation of the Schwarz-Christoffel problem that is better conditioned and better
scaled than the original one.

(2) has now become a system in N-1 real unknowns fyk } , and it can be solved
by any robust nonlinear equations solver. We have used the routine NS01A, by M.J.
Powell [9]. This is an early "hybrid" code, combining a steepest descent method
with an approximation of Newton's method. The results have been very encouraging:
in experiments involving several hundred polygons, the program has converged from
the trivial initial guess yk E 0 ( {zk} equally spaced around IzI I ) in all
but four or five cases involving highly irregular geometries.

3. NUMERICAL INTEGRATION BY COMPOUND GAUSS-JACOBI QUADRATURE. So far we have
described only half of the computational problem; the rest is the task of evaluating
the Schwarz-Christoffel integral efficiently. During the iterative solution of the
parameter problem, (2) and (3) must be evaluated many times for various sets of
trial prevertices {zk} . After the parameter problem is solved, each evaluation
of the Schwarz-Christoffel map at a point ze D will require a further integration
as in (1).

The technique we have used takes advantage of the fact that although the pre-
vertices {zk} vary during the solution of the parameter problem, the angles {k}
do not. Suppose we choose to evaluate (2) along the straight line segment from
zk to zk+l . At each endpoint the integrand has a singularity of the form

(- z/z )-BJ , but otherwise it is smooth. Therefore by a linear change of variable
it is easy to convert (2) to an integral over [-1,1] of the form

-1

where a--k Y -$+ , and f(x) is analytic throughout [-1,1] . Every
integral we need to evaluate in Schwarz-Christoffel computations can be brought to

/ Ithe form (6), and in each case a and y will be drawn from the fixed set
{}U -k }

This is a natural situation in which to apply Gauss-Jacobi quadrature [5].
A Gauss-Jacobi quadrature formula is a rule of the form

NPTS
I ; wk f(xk) (7)

k-l

for some positive integer NPTS , in which the numbers wk are positive weights
and the points xk are nodes in (-1,1) . The formula is constructed to take the
singularities in (6) implicitly into account, and to be optimal in the sense that
it yields the exact value for I whenever f is a polynomial of degree : 2NPTS- 1.
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Gauss-Jacobi quadrature nodes and weights can be computed rapdily to high accu-
racy. We have used the program GAUSSQ by Golub & Welsch [6) for this purpose. Since
the angles {ak ) remain fixed, nodes and weights need only be computed once at the
start of all computations.

One complication must be introduced if Gauss-Jacobi quadrature is to evaluate
the Schwarz-Christoffel integral efficiently in any but the simplest problems. It
happens that in practice, even when P is a reasonably regular polygon, the correct
prevertices {zk} are often spaced exceedingly irregularly around the unit circle.
It is easily possible, for example, to have e2 -Gl l , 03 -6 2 - 10- 4 . In such
a case the integral (2) from z, to z2 has a singularity at z3 very close to
the interval of integration, which transforms in (6) to a singularity very close to
1 . As a result pure Gauss-Jacobi quadrature would require on the order of 104

nodes to achieve high accuracy, costing a thousand times as many evaluations of f(x)
as one would like to allow.

Our solution is to use a form of compound Gauss-Jacobi quadrature. Before
evaluating any integral such as (2), the program determines how close the nearest
singularity zj (j # k , k+l) is to one of the endpoints and subdivides the interval
of integration at that endpoint if it is too close. An appropriate Gauss-Jacobi
rule is then applied on each subinterval, and the division is managed in such a way
that no subinterval is longer than twice the distance to the nearest singularity.
Because of the simplicity of the geometry of the disk, this is easy to do.

By this means we maintain a minimum density of quadrature nodes relative to
the smoothness of the integrand at each point in each integral. The result is an
integration procedure that, in practice, requires about 2d integrand evaluations
in each integration to achieve d decimal digits of accuracy.

4. COMPUTATION OF THE INVERSE MAP. Now that w(z0 ) can be computed for given
z0 c D , the problem of computing z(w0) for given woe Q is relatively easy. The
value sought is the unique solution in D of the nonlinear equation

w(z) - w0  = 0. (8)

If a reasonably good initial guess is known, (8) can be solved rapidly by Newton's
method. At each iteration a derivative w' (z) will be required, and this is just
C times the integrand in (1).

To get a sufficiently good initial guess for the Newton iteration, we reformu-
late (8) as an initial value problem involving an ordinary differential equation in
one complex variable. From (1), z(w) must satisfy

z(wc) = 0

dz 1 N )k
dw T (lz/zk)k

k-1

and since w(z) has a nonvanishing derivative this differential equation is well
behaved throughout f . In principle, therefore, z(wO) can be computed by choosing
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a path from wc to w0  and integrating (9) numerically along that path. Our pro-
gram does this to low accuracy by means of the routine ODE by Shampine and Gordon,
and then switches to Newton's method as a more efficient means of achieving high
accuracy.

This hybrid scheme evaluates the inverse map z(w) in about four times the time
it takes to evaluate the forward map w(z)

5. THE SCPACK PACKAGE. The methods described here have been implemented in
a package of Fortran programs in double precision called SCPACK [12]. Including
the routines associated with the library programs GAUSSQ, NS01A, and ODE, SCPACK
consists of about 33 subroutines and 3000 lines of code. To obtain a copy, send me
a tape with desired DCB parameters or contact me for further information.

6. EXA MULES. Figure 1 shows three conformal maps, two of them onto bounded
polygons and the third onto a polygon with three vertices at infinity. in each case
the images of the radius vectors from z = 0 to the prevertices z- zk  in the unit
disk have been drawn, together with the images of a set of concentric circles in the
disk. All intersections evidently form right angles, as they must. Observe that
contour lines bend tightly around reentrant corners, revealing the large gradients
there, but avoid the backwater regions near outward-directed corners and vertices
at infinity.

Figure 1. Three conformal maps of the unit disk. Contours within each
plot are images of concentric circle in the disk at radii .03, .2, .4,
.6, .8, .97 , and of radii from the center of the disk to the prevertices zk .

A familiar application of conformal mapping is to problems of ideal incompres-
sible flow in two dimensions. Such flow is governed by Laplace's equation V24)0 0
where * is a scalar velocity potential. The plots of Figure 2 show streamlines
for ideal flow through a pair of infinite channels. In each case one Schwarz-
Christoffel map has mapped the given region to the unit disk, and a second (trivial)
one has mapped the disk to an infinite channel with parallel straight sides, where
Laplace's equation has a simple solution. The streamlines shown are images of
straight parallel lines in this channel.
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Figure 2. Streamlines for ideal incompressible flow in two infinite channels.

The other best-known applications of conformal mapping are to electric poten-
tial problems in the plane. In Figure 3 we have considered the problem of steady
DC current flow through a polygonally shaped resistor. One end is held at one fixed
voltage V0 , another at a second voltage V1 , and the sides in between are insu-
lated. Such problems come up in the design of integrated circuits.

Like the previous one, this problem is governed by Laplace's equation. The
difference is that here the boundary conditions are more complicated. First we
reduce the polygon to the unit disk by a Schwarz-Christoffel transformation. Then
we apply the Schwarz-Christoffel formula a second time, but without solving a second
parameter problem: we let z1 , .... z4 be the four points on 7z i at which the
boundary conditions must change, set 7P = ... - r64 = ,/2 , pick arbitrary values
for C and wc , and consider the image of the disk under (1). It is a rectangle
with the special property that the four distinct boundary components of the original
resistor map to its four sides. So once again Laplace's equation has a trivial
solution: a regular grid in this rectangle gives streamlines and lines of constant
voltage, which have been mapped back to the problem domain in Fignre 3.

As a bonus, the resistance of the polygonal resistor may easily be seen to be
a simple number. It is the length of the conformally equivalent rectangle divided
by its width-in this example, 3.3762593

V V

~/"0/

r.'JT._3. Streamlines and equipotential lines in a polygonal resistor.

P examries we have considered in this section required on the order
,m7Wuter time on the IBM 370/168.
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ITERATED SCHOENBERG APPROXIMATION AND ITS APPLICATION

William S. Agee, Robert H. Turner, Barbara A. Dunn
Mathematical Services Branch

Data Sciences Division
US Army White Sands Missile Range

White Sands Missile Range, New Mexico 88002

ABSTRACT. A simple method of local 'approximation and its application
to the approximation of simple functions and to the approximation and smo-
othing of noisy data sequences is described. The local approximation method

which we call iterated Schoenberg approximation (ITSH) was developed at White
Sands Missile Range for approximation or smoothing of noisy data when little
is known beforehand about the character of the data or noise. At last years
Army Numerical Analysis and Computers Conference, Carl deBoor described and
proved the convergence properties of this iterated Schoenber9 method. In
order to obtain a feeling for the approximation ability of I SH, its approx-
imation error is compared with the error obtained from least squares spline
approximation for some known functions. When approximating or smoothing a
noisy data sequence for which little or nothing is known about either the
data or noise, it is necessary to make the location of the knots data de-
pendent. This can be accomplished by examining the estimation error and ad-
ding knots in the vicinity of any trend occurence. This sequence of spline
fitting and error analysis is continued until the estimation error is free
of trends. A local fitting approximation, whose estimation requires only
a minimal amount of computation, is very attractive for this application.
The performance of iterated Schoenberg approximation method for this type
of application is illustrated with WSMR tracking data.

1. INTRODUCTION. At the 1979 Army Numerical Analysis and Computers
Conference Carl deBoor [l] proved several properties of a bimple curve fit-
ting method which we have developed at White Sands Missile Range. This
curve fitting method, which we call iterated Schoenberg approximation (ITSH)
for reasons which will become obvious, is a spline based fitting method. It
is a local approximation method, i.e., the approximation at any particular
value, say t, of the independent variable is mainly dependent on observed
data points (ti, yi) for which t, is close to t and is only very weakly de-

pendent on (ti, yi) which are far from t. The iterated Schoenberg method
is also computationally very fast.

In trajectory data reduction at WSMR it is often desirable to preprocess
noisy measurement data sequences. We may want to simultaneously preprocess
many, possibly long data sequences, each having one or two thousand data
points, in order to accomplish one or more of the following objectives: (1)
Estimation of measurement noise variances to be used in later least squaresprocessing, (2) detection and rejection of outliers in measurement data, (3)synchronizing measurement times, (4) resolving measurement ambiguities.

Most often, very little is known about either the dynamic character of
the measurements or the character of the measurement noise. For this reason
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we make the final choice of the knots in the spline fit data dependent.
This is accomplished by starting with a sparse, tentative set of knots, com-
puting a spline approximation, and examining the fitting error and adding
knots in the vicinity of any trends in the error. This sequence of spline
fitting and error analysis is continued until the estimation error is free
of trends. A local spline fitting method such as the ITSH method which re-
quires only a minimal amount of computation to compute a new spline fit
after adding knots is very attractive for this application.

2. SCHOENBERG AND ITERATED SCHOENBERG APPROXIMATION. Let {T., i = 1,1

N1 be a set of knot locations and let y(t.) be a set of data points to be

fitted by a spline approximation. Suppose we fit a qpline curve of order k,
the most common value of k being four, using the Schoenberg, variation dim-
inishing approximation,

_y(tj A yt. )Bi(t .) ,  (1)

Bi(t) 0

where the values ti are the knot averages

K-lti K7 ZI ti + k (2)

The Bi(t.) are the B-splines of order K and the sum in (1) is taken over the

B-splines which are non-zero at t., The Schoenberg approximation in (1) is

a very fast method of curve fitting since the coefficients of the B-splines
in (1) are merely function values and require essentially no computation.

Although the Schoenberg approximation produces a fit which assumes the shape
*of the data sequence, the magnitude of the fitting errors are often quite

large. If these errors are visually examined, one notices that the errors,
although quite large, are also smooth and that they, in turn, could be well

approximated by a Schoenberg approximation. This observation forms the basis

*. of the iterated Schoenberg approximation method. The following sequence of

steps describes our iterated Schoenberg method for curve fitting.

3. ITERATED SCHOENBERG METHOD.

a. Compute Schoenberg fit to data
Z Y(tI )B*(t (3)

B1(t j) 0 0 Bt)

b. Compute residuals

r(tJ) - y(tj) - y(ti) (4)
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c. Compute Schoenberg fit to residuals

r(ti) B it) 0 Bi t  (5)

d. Update approximation

y(t3 A + r(t (6)

e. Repeat steps b, c, and d until Jr(t.)I are acceptably small.

4. CONVERGENCE OF THE ITERATED SCHOENBERG METHOD (DE BOOR). Let the

Schoenberg approximation be represented as an operator V

y = Vy = Zy(t i )Bi  (7)

Then we can represent an arbitrary term y(n) in the iterated Schoenberg fit-
ting sequence as,

;(n) = ;(n-l) + V(yy(n- 1 )) (8)

If this process converges, we must have
Vy = Vy(-)  (9)

This condition is equivalent to

Zy(t i )Bi = y ()t*)Bi  (0)

The above outline demonstrates that, if the process converges, it converges

to the spline interpolant to the set of points {y(t *), i - N1. de Boor
showed that indeed the process does converge since III - BII,< 1, where B

is the matrix, B = [Bi(t.* )J. Furthermore, de Boor demonstrated that the
slowly varying components of y(ti) are well approximated-more quickly than

the rapidly varying components of y(ti). Thus, some smoothing is obtained

by stopping the iteration early.

5. APPLICATION TO A DOUBLE HUMP FUNCTION. The double hump function,

y(t) - l + 1 < <t!z
.01+(t-.3) .015+(t-l.2)

provides a good first illustration of the application of the iterated

Schoenberg curve fitting procedure. Two hundred equally spaced samples,
Y(tl), tI - .01 1, 1 0, 199, were generated. Knot positions for this
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examples were preselected at T = 0, .19, .23, .30, .43, .50, .59, .87, 1.04,

1.10, 1.20, 1.31, 1.41, 1.61, 1.99. No noise was added to the data points.

Figs. 1 and 2 plot y(t) and 5r (n)t), where r (n)t) is the residual after the
thnh cycle of Schoenberg iteration, for n a 1, 4. We see that after four it-

erations, the fit has converged well enough so that error is everywhere less

than 0.5. Fig. 3 plots y(t) and 5r Ct) for n a 9, 10. Although the error
after the 10th iteration is smaller than the error after the fourth iteration,
the approximation at the fourth iteration is probably adequate for most pur-
poses. This early convergence is even more satisfactory for the more commonly
encountered data sequences which vary less wildly than the double hump funct-
ion used in this illustration. As a comparison to the error in the ITSH ap-
proximation Fig. 4 plots 5r(t), where r(t) is the error in the least squares
spline approximation to y(ti), i = 0, 199, using the specified knots. There

are almost no discernible differences in the error 5r(lO)(t) from the ITSH
approximation and the error 5r(t) from the least square approximation. Again
it must be emphasized that for any practical applications the error in the
early iterations of ITSH, say n = 3 or 4, will be nearly as small as the
error in a least square approximation.

17
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FIGURE 1

Iteration 1 (16 Knots) (1, 20, 24, 31, 38, 44, 51, 60, 88, 105, 111, 132,
142, 162, 200)
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FIGURE 2

Iteration 3 (16 Knots) (.1, 20, 24, 31, 38, 44, 51, 60, 88, 105, 111, 121, 132,
142, 162, 200)
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FIGURE 3

Iteration 9 (16 Knots) (1, 20, 24, 31, 38, 44, 51, 60, 88, 105, 111, 121,
132, 142, 162, 200)
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FIGURE 4

16 Knots 1, 20, 24, 31, 38, 44, 51, 60, 88, 105, 111, 132, 142, 162, 200
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6. KNOT ADDITION TECHNIQUES. When no a priori assumptions are made
either about the character of the additive noise which might have corrupted
the measurements or about the dynamic character of the measurements them-
selves, it will not be possible to make a good a priori choice of the knot
positions. Thus, the choice of the knots will have to be data dependent.
At least two distinct ways of making the knots data dependent have been pro-
posed in the literature. One method is to make a pass through the entire
data set to examine the dynamic character of the data and place the knots
at the points where the largest excursions from a baseline occurs. Such a
technique is proposed by Soames [2]. Another distinctly different method
is to initially select a rather arbitrary and small set of knots. Using
this knot set, a spline curve is fit to the data and the residuals from the
fit are examined for trends. If a trend is identified in any knot interval,
a new knot is added in this interval (subject to the condition that there be
some specified minimum number of data points in each of the new knot inter-
vals). This process of spline fitting, examining the residuals for trends
and adding knots is continued until there are no identifiable trends in the
residuals or there are too few points in a knot interval. This type of pro-
cedure was proposed by Powell [3]. Only the latter type of procedure is con-
sidered here. We have tried several different techniques for identifying
trends in the residuals to the spline fit.

Let r(ti), i = 1, M be the residuals in the spline fit for any knot

interval. The test for trends proposed by Powell is to compute a serial
correlation coefficient for the residuals.

M

S J1(r (ti)-7r)(r(t i+1 )-F)

= (11)
Z (r(ti)-F)

i=l

1 M
where r= R : r(ti) (12)

i=l

If s1 , S s2, no new knot is added in this knot interval. If either
S < si or S > s2 , a new knot is placed at the center of the knot interval,
subject to having a specified minimum number of points in each of the re-
sulting knot intervals. The specific values of s, and s2 to be used de-
pend on the sample size M. For a table of si and's 2 versus M, see Ezekiel
and Fox [4]. The values of s, and S2 are in the neighborhood of s, = -.4
and S2 = .33.

A second possible test for identifying trends in the residual is to
use the Von Neuman ratio, V, which is the ratio of the mean square suc-
cessive difference to the variance.
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(rt i+l )-r(t(v = i~l(13)
Z (r(t i )-r

If v, <  < v2, no new knot is added in the interval. If either V v,

or V > v2 a new knot is placed at the center of the interval. Values for
v, and v2 are dependent upon M. Tables of v1 and v2 are given in Ezekiel
and Fox. Common values for v, and v2 are in the neighborhood of v, = 1.37
and v2 = 2.85.

A third method for identifying trends in a knot interval is to use a

local estimate of the signal to noise ratio of the residuals. Let di+ 3,

i = 1, M-3 be the third differences of the residuals.

di+ 3 =r (ti+ 3) - 3r(ti+ 2) + 
3r(ti+,) r(ti) (14)

We examine the ratio,

1 M 2

S x /Sn  = 1 (15)n M-3 2
20M-4 z (d i+3-d)

i=l

M-3
1I d.+ (16)where d 3 i=R 3

2 2
if Sx /Sn < R0, it is concluded that there is no trend in the interval.

Otherwise, a knot is added at the center of the knot interval subject to
the restriction that there be a minimum number of points in each of the
resulting knot intervals.

7. APPLICATION OF KNOT ADDITION. In order to illustrate the appli-

cation of Iterated Schoenberg approximation in conjunction with a knot ad-
dition scheme, we again use the double hump function used in the previous
examples. For this application, we add random Gaussian noise having mean
zero and unit variance to the sampled values of the double hump function.
Since ITSH uses sample values or interpolated sample values as coefficients
in the approximation, the noisy sample values are locally smoothed in this
application prior to use in the approximation. For the following example
the smoothed values are obtained by taking the median of an odd number
samples centered at each sample data point. We also use the signal to
noise ratio criterion as a means of detecting in the residuals for this
example.
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The initial approximation to the noisy double bump function is com-
puted using the five knot positions, Ti = Q, .31, .59, 1.21, 1.99. Fig-
ures 5 and 6 plot the double hump function, y(t), and 5r n)(t), where
rn(t) is the residual after the nth cycle of ITSH, for n = 1, 4. Figure

7 plots y(t) and 5r~n)(t) for n = 9, 10. In each of these plots, the
residuals have obvious trends which indicates that the five knots used
are totally inadequate for approximating y~t). The signal to noise ratio
trend detector determines that a trend exists in each of the four knot
intervals so that an additional knot is positioned at the center of each
of the original knot intervals, making a total of nine knots.
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FIGURE 5

Iteration 1 (5 Knots)
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FIGURE 6

Iteration 3 (5 Knots)- -- --- -
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FIGURE 7

Iteration 9 (5 Knots)U,
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Figures 8 and 9 plot y(t) and 5rtn )t), n - 1, 4 from the ITSH approxi-
mation using nine knots, T, 0, .16, .31, .46, .59, .91, 1.21, 1.61, 1.99.

Figure 10 shows y(t) and Srnlt) for n r 10. These plots again indicate
that the nine knots used are inadequate and the signal to noise ratio cri-
terion dictates that additional knots should be placed in five of the knot
intervals. The ITSH approximation is reapplied using the fourteen knots,
Ti = 0, .16, .24, .31, .39, .46, .59, .91, 1.07, 1.21, 1.42, 1.61, 1.81,

1.99. Figures 11 and 12 plot the function.and residual for the first four
iterations of ITSH using fourteen knots. From these residual plots one
can see that the fit to the noisy double hump function has improved con-
siderably and the residuals appear to be more random than before. In
fact, the trend detection scheme add only two knots, a T - 1.15 and T -
1.32 making a total of sixteen knots. Figures 13, 14 and 15 plot

5r(n)(t) for n = 1, 4 and n = 9, 10. The residuals appear to be rather
random. This observation is confirmed by the failure of the signal to
noise ratio criterion to detect a trend in all but one of the knot inter-
vals. A trend was detected in the interval [.24, .31) but addition of a
knot in this interval was prohibited by the requirement that there be at
least seven data points in any knot interval.
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FIGURE 8

Iteration 1 (9 Knots)
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FI GURE 9

Iteration 3 (.9 Knots)
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FIGURE 10

Iteration 10 (9 Knots)
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FIGURE 11

Iteration 1 (14 Knots)
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FIGURE 12

Iteration 3 (14 Knots)
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FIGURE 13

Iteration 1 (16 Knots)
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FIGURE 14

WI Iteration 3 (16 Knots)
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FIGURE 15

w Iteration 9 (16 Knots)
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AN IMPLICIT ALGORITHM FOR SOLVING THE TRANSONIC,

CONSERVATIVE FULL-POTENTIAL EQUATION

Terry L. Holst
Applied Computational Aerodynamics Branch

Ames Research Center, NASA, Moffett Field, California 94035

ABSTRACT. A fast, fully implicit approximate factorization algorithm
(AF2), designed to solve the conservative transonic full-potential equation in
either two or three dimensions, is described. The algorithm uses an upwind
bias of the density coefficient for stability in supersonic regions. This
provides an effective upwind difference of the streamwise terms for any orien-
tation of the velocity vector (i.e., "rotated differencing"), and thereby
greatly enhances the reliability of the algorithm. Computed results for both
airfoils and simplified wings demonstrate substantial improvement in conver-
gence speed for the new algorithm relative to standard successive-line over-
relaxation algorithms. In addition, results from a simplified vector computer
efficiency analysis indicate that this AF2 algorithm is suitable for use on
vector computers.

1. INTRODUCTION. An implicit approximate factorization algorithm (AF2)
for solving the low-frequency (unsteady) transonic small-disturbance equation
in two and three dimensions was introduced in reference 1. This algorithm has
been subsequently applied as a relaxation algorithm for solving the steady
transonic small-disturbance potential equation in two-space dimensions (ref. 2)
and the conservative full-potential equation in both two-space dimensions
(refs. 3-5) and three space dimensions (ref. 6). For all steady formulations,
significant improvement in convergence speed for AF2 has been obtained relative
to the conventional transonic relaxation procedure, successive-line overrelaxa-
tion (SLOR).

Several general guidelines for the construction of implicit approximate
factorization (AF) schemes can be formulated by considering the two-level
iteration procedure

NCn + wLjn =0 ()

where Cn is the correction (on+! - on); L4n is the residual, which is a
measure of how well the finite-difference equation is satisfied by the nth
level velocity-potential solution (on); and w is a relaxation parameter.
The iteration scheme given by equation (1) can be-considered as an iteration
in pseudottv, where the n superscript indicates the time-step level of the

solution, t is, ( )n+l - ( )n _ At( )t. The operator N determines the
type of iterative procedure, and therefore determines the rate at which the
solution procedure converges. Classical successive overrelaxation schemes
(SOR) or SLOR schemes effectively use only a portion of the L operator in
forming the N operator. As a consequence, the iteration scheme is relatively
simple, but the convergence rate may be very slow. In the present AF approach,

197



the philosophy is to choose a representation for N that closely approximates
L. This, in theory, will produce a scheme with good convergence characteris-
tics. The procedure for obtaining N consists of two steps: (1) linearize
L and (2) factor the linearized result. There are usually two factors for
two-dimensional algorithms and three factors for three-dimensional algorithms.
The resulting scheme retains the simplicity of having to perform only narrow-
banded scalar matrix inversions (for the present case, bidiagonal and tridiag-
onal). The effects of both the error terms resulting from the factorization
and the linearization are removed from the solution simultaneously by means of
the iteration scheme. Because each grid point is influenced by every other
grid point during each iteration, much faster convergence can be obtained.

Stability in the present full-potential formulation for supersonic regions
of flow has been achieved by adding an artificial viscosity term similar to
that introduced in reference 7. However, in the present formulation, addition
of the artificial viscosity term is achieved by using an upwind bias of the
density coefficient. This strategy greatly simplifies the solution procedure
and effectively allows the simple two- and three-banded matrix form of the AF
scheme to be retained over the entire flow field, even in regions of supersonic
flow. Other studies (refs. 8-11) have used similar steady-state differencing
procedures in a wide variety of problems to further substantiate this differ-
encing procedure as being both reliable and flexible.

Although fully implicit algorithms such as AF2 offer potentially large
benefits in terms of fast convergence, the final computational efficiency
levels may be radically affected by the newer vector computer architectures.
These new vector computers generally feature either parallel (Illiac IV) or
pipeline (CDC STAR) hardwares and very efficiently manage vectorizable algo-
rithms, but in some cases very inefficiently manage algorithms that do not
vectorize. Therefore, a simple analysis based on vector length categorization
of floating point operation counts is used to estimate the efficiencies of
several full-potential algorithms on a model pipeline vector computer. The
full-potential algorithms studied are all three dimensional and include
explicit, semi-implicit (SLOR) and fully implicit (AF2) algorithms. The

* j results indicate that a high degree of vectorization is possible for the
present AF2 algorithm.

2. GOVERNING EQUATIONS. The three-dimensional full-potential equation
written in strong conservation-law form is given by

(0x)x + (0Wy)y + (z)z - 0 (2a)

-" - + 1 (x + 0y2 + 0z 2 )]/ (2b)

The density (p) and velocity components (ox, v' and 0z) are nondimensional-
ized by the stagnation density (p.) and the critical sound speed (a*), respec-
tively; x, y, and z are Cartesian coordinates in the streamwise, spanwise,

and vertical directions, respectively; and y is the ratio of specific heats.
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The two-dimensional conservation-law form of the full-potential equation is
simply obtained by dropping all y-derivative terms from equation (2).

Equation (2) expresses mass conservation for flows that are steady, isen-
tropic, and irrotational. The corresponding shock-jump conditions are valid
approximations to the Rankine-Hugoniot relations for many transonic flow
applications. A comparison of isentropic and Rankine-Hugoniot shock polars is
given in reference 12.

Equation (2) is transformed from the Cartesian coordinate physical domain
to the surface-oriented coordinate computational domain by using a general
independent variable transformation (see fig. 1). This transformation, indi-
cated by

S= (x,y,z)1

n n(xy,z) (3)

= (x,y,z) I

maintains the strong conservation-law form of equation (2) as discussed in
references 13-16. The full-potential equation written in the &-n-C coordi-
nate system is given by

( + (--)= + (P)= 0 (4a)

Y ~ (U0o, + Vn+ W04 (4b)+i

where

U -AIO& + Ay1on + A 504

V - A40 + A20n + A60 (5a)

W - ASO + A6 0n + A 30C

Al = &x2 + &y
2 + &Z2

A2 = +2 + n 2 z2

A3 = ;x 2 + ; y2 + z2 (5b) I
A4 = &xnx + cyny + Eziz

A5 - Ex~x + Cy;y + Ezz

A6 = nx~x + n yCy + nz~ z
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and

x y z y z x z xy z y x y x z x z y

The quantities U, V, and W are contravariant velocity components along the
Z, n, and directions, respectively; A1 - A6  depend on the metric relations

-x J(Ynzc - yczn)

&Y M J(x;z - x z )

Ez M J(x nY; - x yh)

nx a J(y;z& - y&z)

y M J(x z& - xz) (6)

nz M J(:,y - xy)

-x W J(y~zn - ynZ )

y M J(xnz - xEz n)

z M J(x Yn - xny&)

and J is the Jacobian of the transformation. The two-dimensional form of
the full-potential equation, written in the computational domain (E- coor-
dinates), is obtained by dropping all y and n terms in equations (4)-(6);
that is, all y and n derivatives as well as all derivatives of y and n are
set to zero. An exception to this is that y. and ny must be set equal to
one.

The transformed full-potential equation (eq. (4)) is only slightly more
complicated than the original Cartesian form (eq. (2)), provided the quantities
Ai-A6 and J are considered as known constants. Several significant advantages
are offered by this very general form. The main advantage is that boundaries
associated with the physical domain are transformed to boundaries of the com-
putational domain. This aspect is illustrated in figure 1 where the physical
and computational domains for a typical transformation are shown. The compu-
tational coordinates, F, n, and , are in the wraparound, spanwise, and radial-
like directions, respectively. The inner wing boundary transforms to

- ;max, and the outer physical boundary transforms-to C - ;min. Note that
no restrictions have been placed on the shape of the outer boundary. Arbi-
trarily shaped outer boundaries, including wind-tunnel walls, may be used.
The symmetry-plane boundary transforms to n - rmin, and the wing-tip boundary
transforms to n - nmax" The last two sides of the computational domain are
formed from the upper and lower cuts along the vortex sheet. Additional dis-
cussion regarding the general transformation used in the present study is
given in reference 6.
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3. GRID GENERATION. The grid-generation scheme used in this study is a
simple extension of the two-dimensional scheme presented in reference 4; it is
described in reference 6. Basically, this scheme uses numerically generated
solutions of Laplace's equation (or Poisson's equation) to establish regular
and smooth finite-difference meshes around arbitrary bodies. In the present
case, the finite-difference mesh for each spanwise plane (n - constant plane)
is generated using the two-dimensional algorithm. This requires solution ofthe following two Laplace equations in each spanwise plane:

-xx +  Ozz = 0 , xx + -zz - 0 (7)

These equations are transformed to (and solved in) the computational domain.
The quantities and . are the independent variables, and x and z are the
dependent variables. A fast approximate factorization relaxation algorithm is
used to solve the resulting transformed equations (ref. 4). This establishes
values for x and z in each spanwise plane. Coordinate values in the span-
wise direction (y values) are established by a simple stretching formula.
Given the values of x, y, and z at each grid point, the values of the metric
quantities (eq. (5)) are easily computed using finite-difference formulas.
Details of this procedure are given in reference 6.

4. FULL-POTENTIAL EQUATION ALGORITHM

Spatial Differencing. A finite-difference approximation to equation (3),
suitable for both subsonic and supersonic flow regions is given by

i+/2,j,k Ji,j+1/2,k i,J,k+l/2

The operators $(), (), and %( ) are first-order accurate backward dif-
ference operators in the , , and $ directions, respectively, and are
defined by

( )i,jk = ( )i,j,k - (
( )i,J,k = ( )i,J,k - )i,j-i,k (9)

()i,j,k )i (~ )i,j,k-

The standard 64, An, and A quantities are all equal to 1; therefore, they
have been omitted. The density coefficients, , , and are upwind evalua-
tions of the density and are defined by
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i+1/2,jk i+1/2,jk i+1/2,jki+r+1/2,j,k (lOa)

P i,j+1/2,k " ( )P) i,j+i/2,k + vi,j+i/2,k Pi,j+s+l/z,k (10b)

i,j,k+1/2 (I - )pi,j,k+/ 2 + Vi,j,k+i/ 2Pi,j,k+t+1/ 2  (10c)

The density is computed in a straightforward manner by using equation (4b).
The quantity v is a switching function controlling the level of upwinding in
the spatial difference scheme. Further discussion about the calculation of
density and the definition of v will be presented subsequently. The r, s,
and t indices control the upwind direction and are defined by

r -; when Ui+i/2,j, k  0

s - :Fl when V i,j+1/2,k l 0

t - :Fi when W i,j,k+i/2 ; 0

The differencing scheme, given by equationb (8)-(11), maintains an upwind
influence for supersonic regions anywhere in the general -n-; finite-
difference mesh for any orientation of the velocity vector. Thus, the effect
of rotated differencing is closely approximated (ref. 5). This aspect greatly
enhances the stability and reliability of the present algorithm for many dif-
ficult strong shock-wave cases.

Two variations for computing the density have been studied using the two-
dimensional version of the algorithm. (The two-dimensional algorithm is
obtained by eliminating all n terms and dropping j subscripts in
eqs. (8)-(11).) The first variation involves the calculation of the density
at mesh points (i,k) (ref s. 4,5). Simple averages are then used to obtain
the density at the required half points i+1/2,k and i,k+1/2. The second
variation involves the calculation of density at the mesh cell centers
(i+l/,, k+1/2) (refs. 6, 11, 17). Simple averages are used again to obtain
the density at the required half points. In each case, values of 4, , U,
and W required in the density calculation are computed with standard second-
order-accurate finite-difference formulas. Calculation of the density at the
cell centers produces sharper shock waves and better resolution of the
re-expansion singularity at the foot of the shock wave. This is because the
computational module for the latter version extends over fewer grid points and
thereby causes less smearing of the solution. The first variation for comput-
ing the density, by virtue of its increased dissipation, is more easily stabi-
lized for strong shock-wave calculations. Density values in the three-
dimensional scheme are computed and stored at i+1/2,j,k. Values of the
density required at i,J+1/2,k and i,j,k+1/2 are determined by simple four-
element averages. Values of the density required in the &-derivative term of
equation (8) (i.e., ki+112 ) are computed with the smallest possible compu-
tational module in the & '1rection. Therefore, shock waves should be opti-
mally captured in regions where the & coordinate is nearly streamwise.
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Use of the present upwinded density coefficients in an otherwise
centrally differenced scheme, is equivalent to adding an artificial-viscosity-
type term to a standard centrally differenced scheme. The equivalent artifi-
cial viscosity term is given by

a,-] -V U" ' (12)

To obtain the scheme of equation (8), the pE, p and pC derivatives of
equation (12) must be differenced with a backward difference when U, V, and W
are positive and with a forward difference when they are negative.

The artificial viscosity coefficient v strongly affects the stability
of the present scheme and is defined as follows:

J max[(Mjk - J)C,O] for Ui+i/,k >0

Vi+1/2,j,k =  (13)

max[(M 2i+l,j, k - 1)C,0 for Ui+1/ 2 ,j,k < 0

The parameter C is a user-specified constant and is given a value between
1.0 and 2.0. Use of larger values of C increases the amount of upwinding
and, therefore, the effective amount of artificial viscosity added to the dif-
ference scheme. For subsonic regions v is zero, making the spatial differ-
ence scheme entirely second-order-accurate and centrally differenced. In
supersonic regions, as the Mach number increases, the density coefficients
and, therefore, the spatial-differencing scheme, are increasingly retarded in
the upwind direction. An additional constraint placed on v is v : 1. This
improves stability and, in some cases, improves the convergence rate. Expres-
sions for v at i,J+i/2,k and i,j,k+i/2 are required in equations (10b) and
(10c) and are defined similarly to vi+1/2,j,k"

AF2 Iteration Scheme. The AF2 fully implicit approximate factorization
scheme applied to the three-dimensional full-potential equation (refs. 1,6),
can be expressed by choosing the N operator of equation (1) as follows:

cLNC~j - L -j 16 . ;)(Ak - -6 Ai6)- cE~'~ c (14)

where

- Aj (= , (,AA (15)

The 6, p, and coefficients are defined by equations (10a) to (10c) and the
operator E+1 is a shift operator given by
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E".( )ijk )i,j,k+l (16)

The quantity a (eq. 14) is an acceleration parameter which may be considered
as the inverse of a pseudotime step, At-'. The best approach for choosing a
is to use a sequence of values ranging from small to large time steps. The
small time steps are particularly effective for reducing high-frequency errors,
and the large time steps are effective for reducing the low-frequency errors.
A suitable sequence with analytically estimated endpoints (aL,aH) is given in
reference 3. Note that one form of the two-dimensional AF2 iteration scheme
is obtained from equation (14) by simply setting the n difference equal to
zero (ref. 4).

Multiplying out the three factors of equation (14) yields an approxima-
tion to the L operator defined by equation (8) plus a number of error terms.
This approximate L operator does not have the mixed-derivative terms con-
tained in the exact L operator and has been effectively linearized; that is,
all the coefficients used in equation (14), Ai, Aj, and Ak, are evaluated at
the nth iteration level. In spite of these approximations, unconditional
linear stability exists for this scheme; it is discussed in references 1, 4,
and 18. Because this scheme is implicit, each point in the finite-difference
mesh influences every other point during each iteration. As a result, evolu-
tion of the solution proceeds at a much faster rate, relative to explicit or
semi-implicit algorithms.

The AF2 scheme is implemented in three steps as follows:

Step 1: -6Ajn) L + aAk+f ,j,k+1 (17)Ste il j [, ,)J,k

Step 2: (Ak - - Ai6 f ,J,k w gn (18)

Step 3: (a + YO,j,k - fi,j,k (19)

n
Here, w is a relaxation factor equal to 1.8 for all cases presented; gj
is an intermediate result stored at each grid point in a given k plane; that
is, g is a two-dimensional storage array, and fn j k is an intermediate
result stored at each point in the finite-difference mesh. In step 1, the g
array is obtained by solving a tridiagonal matrix equation for each t - con-
stant line in the kth plane. In step 2, the f array is obtained from g
by solving a tridiagonal matrix equation for each n - constant line, again
for just the kth plane. Next, step 1 is used to obtain the g array for
the k - 1 plane, and then step 2 is used to obtain the f array for the.
k - 1 plane, etc. This process continues until all values of f in the
three-dimensional mesh are established. Then, by using step 3, the correction
array is obtained from the f array by solving a simple bidiagonal matrix
equation for each C - constant line in the entire finite-difference mesh.
With this sweeping procedure all coefficients, Ai, Aj, and Ak are required
only once per iteration and, therefore, do not have to be stored in
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three-dimensional arrays. The nature of this AF2 factorization places a
sweep-direction restriction on the step 1-2 combination and on step 3. The
step 1-2 combination must be swept in the direction of the decreasing k sub-
script, that is, from the wing boundary toward the outer boundary (see fig. 1).
The step 3 sweep must proceed in the opposite direction, that is, from the
outer boundary toward the wing. There are no sweep-direction limitations
placed on any of the three sweeps due to flow direction.

Initiation of step 1 at the wing boundary (k - NK) requires knowledge of
f at NK + 1 which is generally unobtainable. A simple solution is to set
f at NK + 1 equal to zero. Because the present iteration scheme is written
in the correction form, f must approach zero as the solution converges. This
boundary condition is therefore consistent with the steady-state solution and
seems to provide acceptable performance. A similar boundary condition is
required for g at i - nmin(J - 1) and i a nmax(J - NJ); it is implemented
by imposing (gn)i,- - (gn)i,NJ - 0.

Temporal Damping. For the AF2 factorization, the N operator must be
written so that either the t-, n-, or ;-difference approximation to the full-
potential equation is split between two factors. This construction generates

either a qtt-, Cnt-, or ¢ t-type term and, if it is properly upwind-
differenced (ref. 19), provides time-dependent dissipation to the convergence
process. When a particular coordinate direction is split (e.g., the E
direction), the resulting Ott difference direction is fixed by the construc-
tion of the AF2 algorithm; that is, the term is either backward or forward
differenced over the entire mesh. Due to the wraparound r coordinate, a
backward-differenced 0t is upwind differenced below the wing and downwind
differenced above the wing; a forward-differenced Ot is downwind differ-
enced below and upwind differenced above. Therefore, a problem with Oct
arises either above or below the wing. Following the two-dimensional
algorithm development (ref. 4) the r-difference approximation is split
between two factors. This allows control over the other more important coor-
dinate directions (E and n) because the Ott and Ot terms are added to the
iteration scheme explicitly and are not part of the factorization construction.
The €,t and o t terms are included by adding

Cn ,k% and (20)

inside the brackets of the first and second sweep equations (17) and (18),
respectively. The parameter $ is fixed to 0.0 in subsonic regions and
specified as needed in supersonic regions. The parameter a is a user-
specified constant, fixed over the entire mesh. For all cases presented in
this study, 8 - 0. The double-arrow notation on the t- and in-difference
operators indicates that the difference is always upwind. For the in direc-
tion, a backward difference is used when the i contravariant velocity com-
ponent (ViIJ,k) is positive; a forward difference is used when V is negative.
The sign is chosen in each case so that the addition of Ot and Ot
increases the magnitude of the first- and second-sweep diagonal coefficients,
respectively. Additional discussion about temporal damping can be found in
references 4 and 6.
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Boundary Conditions. The wing surface boundary condition is that of
flow tangency (i.e., no flow through the wing surface), and requires the
contravariant velocity component at the wing surface to be zero (W - 0). This
boundary condition is implemented by

T'w' (21)

,j,N+1/2 i,j,NK-1/2

where k - NK is the wing surface. In expressions where 0 is required at
the wing surface, the W - 0 boundary condition is used again to obtain

A5 A5
0 wing A3  'A3 n  (22)

Thus, a value of O at the wing surface can be obtained without using a one-
sided difference on 0.

In the present study, a special wing geometry has been chosen to evaluate
the new three-dimensional AF2 algorithm, namely, flow past an arbitrary wing
mounted between parallel walls. The purpose of this model problem is to
simulate the flow past a wing in a wind tunnel. The parallel sidewalls are
treated with the same tangency boundary condition used for the wing surface
(V - 0). Details about the implementation of this boundary condition are
given in reference 6.

5. COMPUTED RESULTS. The implicit algorithm discussed in the previous
section has been coded into a transonic airfoil analysis computer code (TAIR)
and a transonic wing analysis computer code (TWING). Details of the TAIR and
TWING codes are given in references 4 and 6, respectively. Three versions of
the AF2 algorithm have been investigated using the TAIR code; they are desig-
nated by (1) standard AF2, (2) AF2 (LHS -) 1), and (3) AF2 (OLHS 1, 1 xt - 0).
The first version (standard AF2) refers to the two-dimensional AF2 scheme1> presented in reference 4. The second version (AF2, LHS - 1) is the same as
scheme 1, with the additional constraint that all density coefficients are
removed from the left-hand side of the iteration scheme; that is, all the
density coefficients are removed from the N operator, equation (14). To
provide appropriate scaling, the residual (right-hand side of the iteration

n
scheme) is divided by the density, P,1j,k. This kind of simplification was
tried in reference 8 for an ADI-type algorithm and produced stable results.
The third version is the same as scheme 2, with the additional constraint that
all Oxt is removed from the iteration scheme. Stability for this case is
more difficult to maintain and often requires larger values of the constant
C (see eq. (13)), which increases the degree of upwinding in the residual
operator.

Convergence histories for these three algorithm variations applied to a
typical transonic calculation (NACA 0012 airfoil, M. - 0.75, a - 1*) are shown
in figure 2. All three variations converge, but the standard AF2 scheme is
two to three times faster than the other two schemes. It is interesting to
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Figure 2..- Convergence history comparison for three versions of the AF2
algorithm: NACA 0012 airfoil, M=1 - 0.75, = 10.

IZ note that the coefficients of the matrices being inverted in the third case
= are stationary, that is, invariant with iteration. In addition, these

i! of transonic relaxation schemes leading to instability. Another interesting

point is that removal of the density upwinding, but not the density itself,
" from the left-hand side of the iteration scheme (i.e., replacing ALHS uLS),
~produces a convergence rate almost identical to the standard AF2 convergence

rate. Therefore, inclusion of at least the density in the N operator, but
not necessarily the upwinded or retarded density, as well as inclusion of

achieving stability.

Several examples from the TAIR computer code, using the standard AF2

iteration scheme, are now presented. The first test case involves the Korn
airfoil (airfoil 75-06-12, ref. 20) at a free-stream Mach number of 0.74 and
aangle of attack of 0°. This calculation was obtained by using TAIR in the

default mode. This simply means that all parameters affecting the convergence
raeincluding the relaxation factor (w), the acceleration parameters (cik),
adthe temporal damping coefficient (Ba) are either held fixed or are

adjusted automatically by internal computer code logic. This feature greatly
{ simplifies operation of TAIR and improves reliability, especially for inexper-
I ienced users. However, the convergence speed of lAIR in the default mode is
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about 10% to 50% below optimum, depending on the particular case. For more
details about the default mode feature see reference 6.

The pressure coefficient distribution for this slightly off-design Korn
airfoil calculation is compared in figure 3 with a result obtained from the
GRUMFOIL computer code (ref. 21); the calculations are in excellent agreement.
The GRUMFOIL computer code is similar to TAIR in that both codes solve the
conservative full-potential equation, but different in that TAIR uses the
AF2 iteration scheme and GRUMFOIL uses a hybrid direct-solver/SLOR iteration
scheme (ref. 7). This hybrid iteration scheme is composed of one direct-
solver iteration (which is very effective for reducing low-frequency errors
but is unstable for supersonic regions) followed by several (10 is the
default) SLOR iterations. The purpose of the SLOR iterations is to smooth

-1.6 - TAIR

+ GRUMFOIL (INVISCID)

-1.2

-.8 _

-. 4 '

C 0

.4

.8

1.2

1.6 I I I I I I

0 .2 .4 .6 .8 1.0
XlC

Figure 3.- Pressure coefficient comparison: Korn airfoil, M. - 0.74, a - 0*.
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high-frequency errors generated by the direct-solver step in regions of super-
sonic flow. The boundary-layer option available in GRUMFOIL has not been used
in any of the results presented herein. All GRUMFOIL results are computed on
a 148 x 32 mesh; the TAIR results are computed on a 149 x 32 mesh.

The rms error (Erms) convergence-history curves for the Korn airfoil cal-
culation are presented in figure 4. The Erms at iteration n is defined by

(C
n i p

E n W 1- 41 c~) (23)Erms = NI (3

where C n  is the surface pressure coefficient at the ith grid point and the
P.

nth iteration; Cpi is the surface pressure coefficient at the ith grid

100O
o AF2
o HYBRID
A SLOR

10-1

10-2

E 10-3

LU

10-4 I I

1 0-5

0 40 s0 120 160 200
CPU TIME, sec

Figure 4.- Two-dimensional convergence histories: Korn airfoil, M., 0.74,
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point taken from the converged solution; and NI is the total number of sur-
face grid points. Using Erms to compare convergence performance is a much
more quantitively correct procedure than using the standard maximum residual
quantity. (See refs. 3 and 22 for a more complete explanation of this point.)

The three curves shown in figure 4 correspond to the following iteration
schemes: (1) AF2, (2) hybrid, and (3) SLOR. The SLOR scheme is simply the
hybrid iteration scheme without benefit of the direct-solver step (see ref. 7).
Convergence for the SLOR scheme has been approximately optimized by a trial-
and-error adjustment of the relaxation parameter. Each convergence-history
curve is constructed by plotting Erms vs CPU time (Ames CDC 7600 computer).
The hybrid case has been computed with default values for all relaxation
parameters. Set-up times, that is, the CPU time required for grid generation,
initialization, and coarse- and medium-mesh calculations, are included in each
convergence-history curve. The AF2 curve includes 6 sec for grid generation
and initialization. The hybrid and SLOR curves use coarse-medium-fine mesh
sequences. Converged results from the coarse mesh are interpolated onto the
medium mesh and then from the medium mesh onto the fine mesh, thus providing
a good initial guess for the fine-mesh calculation. The set-up times for
these cases are 23 sec for the hybrid case and 28 sec for the SLOR case. For
this calculation the AF2 scheme is about 2.5 times faster than the hybrid
scheme and about 5 times faster than SLOR.

Solutions with Mc. Near Unity. As the free-stream Mach number approaches
unity, interesting airfoil shock-wave patterns develop. These solutions were
the subject of discussion in references 5, 6, 8, and 23. An example calcula-
tion about an NACA 0012 airfoil at M. = 0.95 and a - 0' is shown in
figure 5. The Mach number contours clearly illustrate the existence of a
so-called "fishtail" shock-wave pattern down-
stream of the airfoil trailing edge. The
angle of attack produces lift (CL = 0.43)
and, therefore, desymmetrizes the fishtail
shock-wave structure. The oblique shock
emanating from the trailing-edge upper \,",/
surface has been strengthened while the/ . \I/'

oblique shock emanating from the trailing-
edge lower surface has been weakened and
is almost nonexistent. The normal shock
above the airfoil is much stronger than the J..,
normal shock below the airfoil. This diffi- I

cult calculation demonstrates the conver- V11-/
gence reliability of the present transonic
solution procedure. /

Convergence history curves for this / ,
case - including Erms, maximum residual
(IRImax), number of supersonic points (NSP),
and lift coefficient (CL) convergence his- Figure 5.- Mach number contours:
tories - are presented in figure 6. Con- NACA 0012 airfoil, M. - 0.95,
vergence is achieved in approximately 20 sec a 4*.
of CPU time (Ames CDC 7600 computer), or
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SFigure 6.- Two-dimensional convergence histories: NACA 0012 airfoil,
MC = 0.95, M4

116 iterations, and is indicated by constant values of both NSP and CL.1 The steady-state value of NSP is just over 2,000, which represents about 45'
of all mesh points. At this point, IRImax has dropped only slightly and

. Erms has dropped by over 2.5 orders of magnitude. This apparent discrepancy
is partially due to the fact t-hat the airfoil surface solution, which is
effectively monitored by Erms, converges before the downstream fishtail
shock-wave pattern. Another cause is that during the initial phase of conver-
gence, in which the residual is nearly constant, the position of the shock
sonic line is rapidly being adjusted. This excites high-frequency errors
and, therefore, keeps the residual artificially high, even though Ems is
rapidly decreasing. Establishment of convergence for such a small reduction
in the maximum residual is a characteristic behavior of many strong shock
calculations in which the present algorithm is used. Use of a three-order-of-
magnitude reduction in IRImax as a convergence criterion for the present
case world require Erms to be reduced by 5 orders of magnitude, which repre-
sents more iterations (by a factor of 2) than necessary.

Three-Dimensional Solutions. Results from the transonic wing analysis
code (TWING) are presented in this section. All calculations were made with
the density coefficients upwinded in only the and n directions. For the

212



present case, this was sufficient; however, for cases with stronger shocks at
the trailing edge, density upwinding along the r direction would probably be
required. All results have been computed with aL - 0.4, aH - 4.0, and 6
ranging from 0.1 to 0.5. The larger values of B were required for the
larger aspect ratio cases.

Figures 7-9 show the results of a nonlifting wing calculation with the
following characteristics: NACA 0015 wing, M. - 0.86, X - 30', and AR 1.9.
Figures 7 and 8 show the wing planform Mach number contours at 20 and 80

.. .

Figure 7. Wing planform Mach contours Figure 8.- Wing planform Mach contours
(20 iterations): NACA 0015 wing, (fully converged): NACA 0015 wing,
M 0.86, a - 0% X - 300, AR - 1.9. M. - 0.86, a - 0% X - 30, AR - 1.9.

iterations, respectively. In just 20 iterations, a reasonable approximation
to the final solution is already established. As expected, the shock wave
approaches both sidewalls perpendicularly. Near center span the shock wave is
swept, approximately parallel to the wing leading and trailing edges. The
spanwise shock-strength gradient is quite large. This is indicated by both the
Mach contours given in figure 8 and the surface Cp distributions given in
figure 9. The maximum local Mach numbers are 1.26 in the root, 1.33 in the
center span, and 1.78 in the tip planes. A large part of this spanwise shock-
strenth gradient is caused by the tip sidewall-wing interaction, which is
essentially the opposite of a three-dimensional relief effect. The existence
of the tip sidewall constrains the streamlines to remain in the tip plane.
The wing sweep induces a spanwise component of velocity which in effect
squeezes the streamlines toward the tip plane. This increases the Mach number
and therefore the shock strength in the tip-plane region.
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N =72

Figure 9.- Three-dimensional pressure coefficient distribution: NACA 0015
wing, M. - 0.86, a 0, X = 30 , AR = 1.9.

The TWING calculation presented here was computed with 23,200 (58 x 20 x 20)
grid points. Because of the wraparound mesh, all 58 points in the direc-
tion lie on the wing surface. Each iteration of the three-dimensional algo-
rithm requires about 2.1 sec of CPU time on the Ames CDC 7600 computer. For
the case just presented, this equates to a total run time of less than 3 min
to achieve plottable accuracy. Cases with weaker shock waves are faster. For
subcritical cases the run time is faster still, requiring only about a minute
of CPU time. These times include CPU time for metric recalculation every

iteration. Another version of TWING, using disk storage to store all metric
quantities, actually requires less CPU time per iteration (1.8 sec); however,
it is slightly more expensive, because of the adaitional I/O access charges.
This, of course, is a characteristic of the Ames CDC 7600 charging algorithm.

6. ALGORITHM EFFICIENCY ON VECTOR COMPUTERS. The use of computational
fluid dynamics as a relatively fast and inexpensive aircraft design tool is
finding increased acceptance in the aircraft industry (refs. 24, 25). Use of
these tools and the development of new, more efficient numerical algorithms,
however, requires faster and more cost-effective computers. In this regard
vector computers, such as the Burroughs Illiac IV, the CDC STAR-100, and the
CRAY-I, show considerable promise. These vector machines offer greatly
enhanced computing speeds arising from the ability to operate on many
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calculations simultaneously, parallel machines, and/or in an assembly line
fashion, pipeline machines (more discussion regarding vector computer archi-
tectures can be found in ref. 26). Because of the nature of the speed
enhancement, these machines tend to favor certain classes of algorithms. It
remains to be seen how existing algorithms, as well as new ones, will lend
themselves to these new computer architectures. The purpose of the present
study is to compare various full-potential algorithms on a model pipeline
vector computer and, therefore, determine if any fundamental limitations
regarding efficient vector computing exist.

Algorithm Model. The simplified model used to simulate the various full-
potential algorithms is now discussed. The basic elements of this model are
as follows: (1) perform a floating point operation count for the algorithm,
preferably from an existing computer code; and (2) subdivide the operation
count according to vectorizability (plane, line, scalar), that is, all opera-
tions which can be vectorized into planes are placed into the plane category,
all line vectorizable operations are placed into the line category, etc.
Further discussion on the subject of algorithm vectorizability along with
examples is presented in reference 26. Included in the present analysis are
boundary condition operations (when possible) as well as "penalty operations"
involved with data transposes. Overhead operation counts involved with do loop
logic, addressing calculations, etc. are not included. In view of the simple
nature of the present algorithm model, only idealistic estimates for algorithm
performance are expected. The primary utility of the present model is in pro-
viding an optimistic upper bound for the performance of an algorithm on a
vector computer. In addition, since all algorithms are modeled with the same
assumptions, the present analysis provides a simplified basis for the compari-
son of different algorithms.

4 Computer Model. Once statistical data for each algorithm are obtained,
computational efficiencies using a pipeline vector computer model are deter-
mined. All results assume in-core operation only. Rules used to establish
the computer model are as follows: All floating point operations (including
addition, subtraction, multiplication, and division) are modeled by the follow-~ing performance curve:

SR
0

e 1 + R(So - 1) (24)

where

des. Ap+Lmax
S0  dRiR-0 Ap (25)

In equations (24) and (25), e is the efficiency, defined as the ratio of
actual MFLOPS rate (million floating point operations per second) to the
maximum MFLOPS rate, R is the ratio of vector length (dictated by the algo-
rithm) to the maximum vector length allowed by the hardware, A is the vector
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pipe startup time in clocks, and p is the number of pipes. The maximum

MFLOPS rate is defined by

Lmax 0-6 (26)
MFLOPSmax A + -Lmax/p c

where c is the clock time in nanoseconds. The model computer performance
curve, given by equations (24)-(26), is typical for existing pipeline vector
computers; it is displayed in figure 10. Values for each of the machine-
dependent parameters defined in equations (24)-(26), are also displayed in
figure 10.

100

80

x

0 60

u 140

20

0 .2 .4 .6 .8 1.0
R- L/Lmjax

Figure 10.- Computer model performance curve; So a 300, Lmax  65,536,

Ap = 219.

The next aspect of the computer model concerns the establishment of a
transpose penalty. The transpose operation is required by some algorithms
(usually implicit algorithms) to reorder data in memory, thus allowing contig-
uous memory access during execution of vector operations. For the present
computer model, data transposition efficiency et is determined by et - cTpe,
where e is the standard efficiency obtained from equation (24). In all
cases, a value of 0.25 was used for the transpose penalty coefficient cTP.
This value produces reasonable agreement with typical pipeline vector computers.

The scalar computational efficiency es is determined by assuming one
scalar result every five clocks. This yields a scalar efficiency for the
present model computer of 0.05. This value corresponds to an idealistic upper
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bound on scalar performance and, therefore, is consistent with the present
analysis.

Once individual efficiencies have been computed for each vector length -

that is, efficiencies for plane operations, ep; line operations, ek; scalar
operations, es; and transpose operations, et - the overall efficiency is com-
puted as follows:

1
(Rp/ep) + (R/et) + (Rs/es) + (Rt/et) (27)

where

R- Np/NTOT

Rk - NZ/NTOT

Rs M Ns/NTOT (28)

Rt a Nt/NTOT

and

NTOT ' Np + Nk + Ns

In equations (27) and (28), Np and Nk are the number of planar and line vec-

torizable operations, respectively, Ns is the number of scalar operations,
and Nt  is the number of transposes.

Vector Computer Efficiency Results. Results of the present vector com-
puter efficiency study are shown in figures 11 and 12. The efficiency e is
plotted vs the degree of planar vectorization (% planar) for a mesh consisting
of 105 points (n x n x n where n - 46) in figure 11 and 5 x 105 points
(n x n x n where n - 79) in figure 12. The solid curves indicate4; % scalar - constant lines and are displayed for 0, 2, 4, 8, 16, 32, and 64%
scalar content. This type of plot or "efficiency map" displays all the
possible algorithm combinations composed of plane, line, and scalar operations.
As such, it represents a good format for comparing different algorithms or
algorithm coding philosophies.

Theoretical efficiencies for four full-potential algorithms are compared
in figures 11 and 12. These three-dimensional algorithms are (1) AF2 (with
and without transpose penalty), (2) SLOR, (3) ZEBRA II (see ref. 11), and
(4) ADI (with and without transpose penalty). For'the grid with 105 points
(fig. 11), ZEBRA 11 is the most efficient algorithm (86%); ADI is 67%,
AF2 49%, and SLOR 32%. The SLOR algorithm is least efficient because it
inherently contains a relatively large number of scalar operations (5% for
the model algorithm version considered here and potentially larger percentages
for other versions). The transpose penalty associated with the ADI algorithm
is much larger than that associated with AF2 because ADI has twice as many
transposes. The efficiency map shown in figure 12 is very similar to the
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Figure 11.- Algorithm efficiency on a model pipeline vector computer: 105 grid
points.

efficiency map of figure 11. The biggest overall difference is that all algo-
rithms gain in efficiency as the grid dimensions are increased. This, of
course, is a direct result of increased vector lengths.

The rate of execution, that is, the efficiency, of a particular algorithm
is only one of three important considerations needed to determine total execu-
tion time for a solution. The other two considerations are number of opera-
tions per iteration and number of iterations required for a solution. The
implicit schemes (e.g., AF2) lose ground relative to explicit schemes in the
first two categories, but overwhelmingly gain ground in the last category.
Ultimate algorithm supremacy can only be determined by collectively consider-
ing all three categories. Such a comparison is displayed in table 1. The
number of iterations per solution has been estimated from two-dimensional
results. The AF2 algorithm is fastest on the model computer, being about
7 times faster than SLOR. The ADI and ZEBRA II algorithms are next in speed,
being about 5 and 3 times faster than SLOR, respectively.

One last comment concerning efficient computation on vector computers is
in order. The type of vector computer modeled in the present study attains
most of its efficiency only when large vectors are utilized, for example,
planar vectors. Other vector computers do exist that attain very efficient
operation (-100%) with much shorter vectors, for example, line vectors. Also,
different computer hardwares provide for different alternatives for data
transposition - some machines have no transpose penalties at all. Because of
these features, implicit algorithms may provide even larger savings in overall
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Figure 12.- Algorithm efficiency on a model pipeline vector computer: 5 x 105
grid points.

TABLE I.- TOTAL EXECUTION TIME COMPARISON FOR SEVERAL FULL-POTENTIAL
ALGORITHMS ON A MODEL PIPELINE VECTOR COMPUTER

Algorithm (105 e Operations Iterations Time
mesh) per solution (Time)

grid point SLOR

SLOR 32%, 160 -600 1. 00
AF2 49% 200 -100 0.14

ADI 67% 210 -200 0.21
ZEBRA II 86% 130 -600 0.30
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computer times. The exact amount of savings can only be determined when all
these features are considered.

6. CONCLUSIONS. A fast, implicit algorithm for solving the conservative
full-potential equation in both two and three dimensions is presented. Sta-
bility in supersonic regions is maintained by using an upwind evaluation of
the density coefficient along all coordinate directions. This provides an
effective upwind difference of the streamwise terms for any orientation of the
velocity vector (i.e., rotated differencing), and thereby greatly enhances the
reliability of the present algorithm. The present scheme has been used to
compute a number of difficult two-dimensional test cases, including cases with
"fishtail" shock-wave patterns. The rapid convergence of these difficult
cases demonstrates the reliability and efficiency of the present transonic
flow solution procedure.

The present fully implicit AF2 algorithm has been compared with both the
standard transonic-solution procedure, successive-line overrelaxation (SLOR),
and a hybrid (direct-solver/SLOR) scheme. The surface Cp distributions pro-
duced by these schemes are in good agreement. Based on CPU time, the rms
error in the surface pressures is reduced approximately 5 to 7 times faster by
the AF2 algorithm than by SLOR, and approximately 2 to 3 times faster by the
AF2 algorithm than by the hybrid scheme.

A three-dimensional solution for a swept wing mounted between parallel
walls is also presented. For this calculation a strong shock wave extends
across the entire wingspan, indicating a high degree of reliability for the
three-dimensional AF2 algorithm. Convergence histories indici;te that the con-
vergence rate improvement experienced in two dimensions carries over to the

three-dimensional version of the fully-implicit algorithm.

A simple analysis based on vector length categorization of floating point
operation counts has been developed and used to estimate the computational
efficiency of several full-potential algorithms on a model pipeline vector4computer. Despite penalties imposed by vectorization of implicit schemes,
results indicate that a high degree of efficiency can be obtained from implicit
algorithms, including the present AF2 algorithm.
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ABSTRACT. Both theoretical and computational results are given for
the application of projection methods to compute bifurcation branches
for solutions to systems of ordinary differential equations. A normal-
ization is given in the Hopf case that enables one to compute around
turning points.

1. INTRODUCTION. Several authors have recently studied the com-
putation of solution branches bifurcating at singular points for opera-
tor equations. Included here are Keller [51, Atkinson [1], Weiss [13],
Rheinboldt [8], Westreich and Varol [14], Seydel [9,10], Weber [12],
Hassard and Wan [4 and Langford [6] among many others. These papers
consider problems in which one of the key assumptions in the analysis of
numerical methods is not satisfied, namely that the desired solution be
isolated. This assumption has been fundamental to the analysis of pro-
jection methods for boundary value problems. We will extend the known
results on the approximation of bifurcation branches in several ways
here. We will explicitly consider the use of projection methods, e.g.
collocation with splines. Results published to date deal mainly with
finite difference methods or more constructive iterative methods based
on asymptotic expansions. Our results are more general than those ob-
tained for difference methods in that we allow more general parameter
dependence. In the Hopf case, we introduce a new normalization condi-
tion and reparameterization to facilitate computation around turning
points for the branches.

Section 2 of this paper contains a sketch of our theoretical re-
sults justifying the use of projection methods. Section 3 contains
computational details in the Hopf case.

2. CONVERGENCE RESULTS. We are interested in two problems. The
first has the form

(a) Dmu + j10 aj(x) = f(,u) 0 < x 1

(2.1)
(b) Bu - 0

where u is a real parameter, u(x), a.(x) and f(u,u) are real-valued
functions and (2.1)(b) represents m ieal, linear, homogeneous boundary
conditions which contain derivatives of u up to order m-i at x-O and
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PFF I

x=1. We consider the approximation of solution branches to (2.1) as
the parameter P varies by using projection methods. As an example, let

Y be the polynomial splines of degree m+k and in cm'p over a partition

An of (0,1]. Let (Ci) denote a set of collocation points in (0,13.

Then we approximate the solution to (2.1) by solving
(2.2) Dmu n() + 7-0 aj (Ci)Dun(n ) - f(i, u

where un CYn and Bun= 0. For collocation at Gauss points one has p - -1.

For details on the set up of collocation and other projection methods,

see Reddien (7]. Following (7], (2.1) can be expressed in operator

form as v + T(u,v) = 0 (letv- Dmu) under suitable assumptions on B,

and (2.2) can be written analogously in the form Vn + PnT(Ij,vn) - 0.

Based on these formulations, our approximation results are developed.

For simplicity, the known solution branch will be taken to be the zero

branch, i.e. T(0,0) - 0. Let F(u,v) be a C2 mapping from R x X-X where

X is a Banach space. We later will define F using I+T. We assume (HI)

that F(,,0) = 0 for Ip-p*I<i, (H2) Null(Fv(u*,0)) and X/Range(Fv(v*,0))
are one-dimensional, and (H3) fJv(u*, 0 ) fo is not in Range (Fv (u*,0)),
where *0 spans Null(F (W*,0)). Let Z be any complement of Null(F (l*,0))
In X. We will need t~e following basic result [2].

Theorem 2.3. (Crandall and Rabinowitz) Let (Hl)-(H3) hold. Then there
is a neighborhood U of (P*,O) in RxX, an interval I=(-a,a) and continu-
ous functions *:I.R and *:I-Z so that f(0)=p*, *(0)=0 and

F-1 (0) ()U - ( ) ,ct# +az)I Ia)U( (U, 0). (1,0)cUJ

Moreover, # and * are C2 mappings.

We define F(;a,v) = v+T(N,v) and assume T is such that F satisfies
(Hi), (H2) and (H3). We assume in addition that (H4) there exists a

neighborhood U of (P*,0) in Rx X so that PnT (I,v)Tv,(Gv) and
P T (u,v)-T (i,v) uniformly for (p,v) in U as n-ow. Hypothesis (H4)
follows easily for the problem (2.1) with the usual collocation projec-
tors [71 in (2.2).

Our convergence proof is an application of the Kantorovich theorem
on the convergence of Newton's method. The following version can be ap-
plied.

Theorem 2.4. Let P be a mapping defined on a Banach space X1 into a
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"I L'ce X ._J I Ih (IIC Im)A u the L . n I~t 1 of 2rdiius p .1,1
C2  ,'2

x O . i,,t P be a C 2hiplpcJng and let:

(1) i P" (x) i<k on B(x 0 , )

(2) P' (x o ) oito ,with II-(x o)- IIB

(3) I IP (xo) P(X0 ) 1I<n
(4) PO--I - (-2hn) with h nk

0" h

.:tisfy p 0 <p and h< . Then P(x)::0 has a solution x* in B(x0 ,p) which is
c).mputable by Newton's j;ethod starting from x 0 * Define u= (l+ (l-2h) )q/h.

If L'L,, then x* is the unique solution to P(x)=0 in B(x0 ,p0).

Rewrite tie p rc)l r F(n,v)-0 in the form F(P,n0z 0 Z)=O, z in Z,

'.h ' 0 and] z .re clof ,',(!d is earlie'r. Define

(2.5) f (a,V),z) ( I F ( ,a 0 4 aZ) Os O

FO( , 0) (it,0+z) C'=0

v'e write (2.1) thr.n in the equivalent form f (a,i,z)=O. Comput ationa iy,

0,¢ 0O and z do not have to be identified, although to do so is often help-

ful [6). 'e further define Fn (p,ao0 +az)= P n0 + az + PnT(i,oP n 0 +az)
and define f ((i,,z) as in (2.5). Then (2.2) can be written in the form

n

f (c, ,z) -0 for fixed a.
n

* ' 'fo ,,.t lb]Jsh cur conveigence result. we apply the Y,-rtiorovich theorem

S to f We i -ke P:RxZ-X to be defincd by P(i,z)=f (a,i,z) . Let X =
n n

t ? x Z and 2 X. 'T)- )I of is i, i (.]at. ive-ly !-I r;,ight fc ward compulaticon

i-{ I , n, t he F,,ct I hiit fi j m thu Hj oof of t he C-irirla 3 -Rabinwit.z I.heorrm, it

follows thiit the nip (Ci,z)-,f (a,, ,) is continuously Fr~chet differenti-

able and the Fr6chet derivative has a bounded inverse at (0,i*,O). We

will omit the details.

TTheorem 2.6. Let conditions (Hl)-(H4) be satisfied. Then there exists an

integer N and a real number (b>0 so that for all n>N and 0<a<a 0 , there is

a on, ique solution to the equation Vn+Pn T(nvn)=Oof the form Vn=aPno0+az n

z n P nX. Moreover, the following error estimate holds:

I 1( ,,' v ) - (4' (a ,' ,4 , 0 ( ))1 =

0(i1l 4C(a) - n ( -Of (C.))11 .
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We have shown that for a fixed value of a0' accurate approxima-

tions are well defined in the vicinity of the bifurcation point. Con-
vergence rates follow from Theorem 2.6 using results in [7].

Hopf bifurcation can be analyzed in an analogous manner. We con-
sider the system

i' du

(2.7) du + F(I.,u)=0

where ucR and F:RxRMR m . Let S be a neighborhood of 0 in RxRm and (Al)
let F be in C2 (,Rm) and (A2) F(u,0)=0 for (u,0) in Q. We let (0,0) be
the Hopf bifurcation point. Define the unknown period to be 2wo and
let T-p 't. Then (2.7) becomes

(2.8) du/dT + pF(U,u)=0

and we seek 2w-periodic solutions. We replace T by t in what follows.

The Banach spaces of 2w-periodic functions in Cl(R,Rm) and C(R,Rm)
will be denoted by C and C2  respectively with the usual [3 ]L'-norms.

Define L0 = F u(0,0). In order to guarantee the existence of periodic
solutions near (0,0) we assume (A3) that (a) i is an algebraically sim-
ple eigenvalue of L0 (b) nijo(L 0) for n = 0,2,3, and (A4) by defining
continuously differentiable functions 8(W) and x(G) near U - 0 so that

F (11,0) X = x(u),

8(0) - i and x(0) spans Null(L 0 - iI), that ReO'(0) = 0.

j These assumptions guarantee the existence of continuously differentiable

functions (p,p,u): (-nn) -, R x R X C1, n>0, so that

(a) p( ), ji(c), u(a) is a nontrivial solution of (2.8) for a in (-n,n)
and a 0 0 and (b) P(O) = 0, u(0) = 0 and o(0) = 1. This solution branch
is unique up to a translation in t.

For numerical methods, we again consider projection methods as given
for example in (2.2). That is, let Xn be a finite dimensional subspace

of C1 and let Y - DXnC C We let Pn be a continuous linear projec-
tion mapping C onto Yn and assume (AS) that P n I as n * -. Addition-
ally, we assume that for sets of functions S in C2W that are uniformly

bounded in the norm of C2W, that P n - I uniformly over S. Thus we de-
velop approximations un to the solution u of (2.8) by solving

(2.9) u, + n PnF( n'Un) - 0, Unex n .
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Existence, uniqueness and error estimates for solution branches
follow again by using a Newton's method argument. The details will
appear elsewhere. The basic idea is based on results in [3], Let

40 in C1 {0 satisfy 06 + L0 0 0 - 0. Let V be a complement of Null

d + L0 ) in C1. Define H(p,,u) = u' + pF(,u). Then the role of

f(a,i,u) in the simple bifurcation is played by

= (p, H( 1,a(0 0 + v)) Q#0

Hu(P''0) 0O + V) ci0

where G is a mapping defined on RxRxRxV.

Theorem 2.10. Let conditions (Al)-(A5) be satisfied. Then there exists

an integer N and a real number a0 >0 so that for all n>N and 0 < a < a0 ,

there is a unique solution (pn,uAn,un) to (2.9) where u n - an(Pn0 + Vn),

vn in V. Moreover,

(P 0 U - (p (a) ,ii (a) , a 0 + av(c)) I 

0(HjPnu6 - u6 110 + 1IPn0 - OIICl).

Uniqueness results are somewhat weaker in this case since solutions

to (2.8) can be translated. Normalizations are given in the next sec-

tion.

3. (134P[MTATIONAL OONSIDERATINS. We treat the switching of branches and oom-
putations for simple bifurcation using normalizations developed and described by H.B.
Keller in the important [5). Thus we omit details of this case and give only our
treatment of Hbpf bifurcation as it is apparently new. We present a general continua-
tion method that allows for computation past turning points without added difficulty
in the fopf case. The branch switching techniques of Keller are applicable here.
Computational methods for periodic branches have been given by Hassard and Wan [4]
and also Langford [6].

The cziputation of branches of periodic solutions away f m a Hopf point is fre-
quently based on their assume stability. If a branch is unstable and if the system
(2.8) consists of two equations, then one can simply replace t by -t. In all other
cases direct initial value techniques will be difficult to implwmnt especially if
turning.points are present along the branch of periodic solutions. Our procedure en-
ables the computation to proceed past turning points as well as along unstable branches.
The period of p in (2.8) is treated as an unknown; periodicity is imposed as a side
condition; and two additional equations regulate the stepsize along the branch and
anchor the periodic solution.

Suppose (p0 ,i 0 ,v) is a 2w-periodic solution to (2.8). To find a neighboring

solution (pu,u) a distance s fra the given solution, add the condition
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(3.1) e(P-p) 2 + 2 (1-u1 2 + e1 -v 112 2
where the e i are fixed weights and 11" t 2 is the L2-rr. Eg (3.1) w

using Sifrson's rule in our computations. Accuracy here is not inportant. For each
s0 the solution u to (2.8)-(3.1) is isolated and unique up to translation in time.

Por numerical c tios u can be anchred by requiring (u(0) - v(0)).L v' (0), i.e.

that

(3.2) (u(0) - v(0)).. f( 0 ,v(0)) - 0.

At a Hapf point (u0,v 0), f(Y0 ,v0 ) - 0. It is known that the periodic branch

has the asymptotic expansion u(t,s) = v0 + sO0 (t) + 0(s 2) where the function 0 0ws

defined in Section 2. Thus to switch onto the periodic branch we replace (3.2) by

(u(0) - v(0)) T 40(0) = 0. The full system can be shown to be well-posed.

The dynamic behavior of a single first order chemical reaction in a Ctinuously
stirred tank reactor can be modelled by the ordinary differential equations

ui= -ul + B.Da(l-u 2 )e l -
(3.4) )u = -u 2 + Da(1-u

2)e 1

where B, B and Da are dinensionless parameters. An extensive numerical treatment of

this problem is reported in [111. We discretized (3.4) using collocation at Gauss

points and continuous quadratic splines. See (7] for definitions. The associated
mesh was redistributed regularly along a solution branch to approximately equidistri-

bute arclength. Along periodic branches for (3.4), the solution changes rapidly in a

very small interval. Moreover, the location of this interval does not reain fixed.

Thus equidistributing the mesh resulted in significant improvement of the numerical
results. Using an adaptive mesh, 71 mesh points, and with 8=3, B4, the correspond-

ing bifurcation diagram of (111 was recovered. See Figure 4.1. The solid curve re-

presents the branch of periodic solutions, while the steady state branch appears

dashed. A typical result is given in Figure 4.2 where an insufficient nmber of ten

umiformly disatibut mesh points is used. Note the abundance of extraneous solu-
tions. The ability of the method to ca pute past turning points is illustrated here.
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ON K-LINE AND K x K BLOCK ITERATIVE SCHEMES

FOR A PROBLEM ARISING IN 3-D ELLIPTIC DIFFERENCE EQUATIONS

by

Seymour V. Parter

and

Michael Steuerwalt

ABSTRACT

Novel computer architectures and a desire to solve three-
dimensional problems have together aroused new interest
in iterative methods for computing solutions to elliptic
difference equations. Block iterative methods are
particularly attractive for vector machines, such as the
CRAY-1. Schemes that take the basic block to be a plane
reduce a three-dimensional elliptic system to two-dimensional
systems, to which block methods are again applicable. We
analyze the convergence rate of k-line and k x k block
iterative methods for solving these two-dimensional problems.

1. INTRODUCTION

Some years ago there was great interest in iterative methods

for solving elliptic difference equations: see [1, 12, 13, 21, 22,
23, 24]. Recently there has been more emphasis on finite element

equations ([2, 4, 5, 20, 25]) and direct methods of solution
([7, 8, 11, 17, 18]). Nevertheless, in practice, particularly in
the case of three-dimensional problems (see [9, 11, 19]), finite
difference equations are frequently used and they are commonly
solved by an iterative method, usually some variant of the SOR
method. Furthermore, the advent of new computer architectures,
"vector machines" and "parallel processors," has stimulated a
search for iterative schemes that are particularly efficient for

these machines.
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Ife examine two block schemes that arise in this way.

Consider the three-dimensional model problem

- h(3) U f (xi, y n, zn) E f2

U - g , (x i ,  z a

where

(1.2) (xi' yj zn )  (ih, jh, nh) 0 ' i,j,n < P + 1

are the grid points in the unit cube 2 with

(1.3) h = 1

and ah(3 ) is the usual 7 point discrete approximation to the

Laplace operator, given by

Ui I,j, n  - 2 Uij n  + Ui.l,j, n

h2

(1.4) (Lh( 3))ijn Ui,jl, n - 2 Uijn + U i j-l,n

} h2

Ui,jnl 2Uij n  i, j ,n-1
t h2

'Suppose that one has decided to use a "plane" iterative method,

probably block SOR where each block is the set of unknowns

Cl.S) Un IUi,j,n 1 ' -
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associated with a plane n a constant. Now we must solve the
equations in each plane. With V - U these equations can be
written as

(1.6) 6 V i - v- ViVI . Vi-j+l . Vi'j.1 F ij,

i < iJ < P .

We consider two block iterative schemes for the solution of (1.6).

These are

(i) k-line iterative scheme: In this scheme each block con-
sists of the unknowns Vi. associated with the points on k

consecutive horizontal lines. These blocks are indexed by a
single index, say s. We have

(1.7) Vs z {Vi,k(s-l)+u ; I < u < k}

(ii) k x k block iterative scheme: In this scheme each block
consists of the unknowns Vii associated with the points in a
k x k square. It is easiest to describe this block with a
double index (r,s). The (r,s) block is

(1.8) V rs lVkr.l)+ik(s.l)+j ;1 < ij < k

Because each of these block structures satisfies block

property A (see [1, 22, 24]) the spectral radii of the Gauss-Seidel
method and the SOR method (as well as the optimal overrelaxation
parameter wb) are determined by the spectral radius of the block
Jacobi scheme.

From the analysis of the corresponding block iterative methods
applied to the two-dimensional Poisson problem (see [3, 14, 15]),
one might expect that these spectral radii behave like 1/k.
Unfortunately, this is not the case. In fact, if p(SkL) and

p(SkB) are the spectral radii of the block Jacobi iterative methods
based on the blocks (1.7) and (1.8) respectively, applied to (1.6),
we find that both p(SkL) and p(SkB) have nonzero limits as k !
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In Section 3 we give the results for the case k -1. These

results are obtained immediately by tensor product methods.

In Section 4 we begin our analysis of p(SkL) and p(Sk). We

USe a variant of "separation of variables" to reduce the problem

to a one-dimensional eigenvalue problem involving tridiagonal

matrices.

In Section 5 we obtain the basic estimates of the spectral

ra.lii; loosely speaking, if P/k > 2, then

(1.9) p(SkL) 2 r -V+ 0(h') = .267949 + 0(h)

p(SkB) - 1/2 (3*- v"i) + 0(h2) = .381966 + 0(h2)

Two sets of approximate values for P(SkL) and p(Sk) are given

in the following tables. For k > 3 the results are correct up

to a term that is O(h 2.

k P1 (SkL) Q 2 (SkL)

1 1/2 - 3-n2h2 /8 1/2 - 3-n 2 h2 /8

*2 1/3 + O(h) 1/3 + O(h)

3 .268541 ± .185(-l) .286398 ± .684(-3)

4 .267987 ± .483(-2) .272772 ± .443(-4)

6 .267949 ± . 344(-3) .268293 ± .&221(-6)

*18 .276949 ± .247(-4) .267974 ± .114(-8)

12 .267949 ± .127(-6) .267949 ± .302(-13)

14 .267949 ± .9.13(-8) .267949

18 .267949 ± .471(-10)

24 .267949 ± .178(-13)

27 .267949

Figure 1.
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kc P1 (SkB) P2 (SkB)

1 2/3 n r2h2/3 2/3 - 7r2 h2 /3
2 1/2 O (h) 1/2 + O(h)

3 .384848 ± .515(-1) .432468 ± .390C-2)
4 .382296 ± .187(-l) .400477 ± .477(-2)
6 .381972 ± .266(-2) .38462S ± .934(-S)

8 .381966 ± .387(-3) .382353 ± .196(-6)1

12 .381966.± .824(-S) .381974 ± .888(-10)

14 .381966 ± .120(-5) .381967 ± .189(-11)

16 .381966 ± .17S(-6) .381966 t .409(-13)
18 .381966 ± .256(-7) .381966

24 .381966 ± .795(-10)

30 .381966 ± .247(-12)
36 .381966

Figure 2.

In these tables the shorthand .18S(-1) stands for .185 x 10-1.

Note that the tolerances for P2 are smaller than the tolerances

for 01, even though the estimates P1 appear to converge more

rapidly.
As we indicated above, the Jacobi spectral radius determines

the spectral radii of the Gauss-Seidel and SOR methods. For the

Gauss-Seidel scheme, neglecting 0(h2) terms,

2
p(S-B-GS) - p(S-B) - .14S898

The optimal w for the SOR method is given by

wb 2/127
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where p is the spectral radius of the Jacobi method (see (22]),

and with this choice of w

(SOR) - wb b

Hence

(1.11) p(S-L-SOR) - .018624

p(S-B-SOR) - .039406

Figures 1 and 2 show that in a plane iterative method for (1.1)

the inner iterations to solve (1.6) need not use a very large k.

Indeed, at k = 8 the spectral radii have essentially reached their

asymptotic values.

We describe some computational results in Section 6. Finally,

in Section 7 we briefly discuss block iterative methods for two-

and three-dimensional problems in the context of vector machines

such as the CRAY-i.

But one important comment should be made now. Our analysis

seems to be very special and perhaps limited to model problems.

On the other hand, standard elliptic problems of great generality can

A be analyzed by the methods of [3, 13, 15]. Unfortunately, those

methods do not, and apparently cannot, apply to the strongly

diagonally dominant problem (1.6). Elliptic problems discussed in

the earlier works are regular problems, while (1.6) corresponds to

a two-dimensional discrete singular perturbation problem

(1.12) - h2 &h(2) U 2 2 U * F

For this reason, and to distinguish from the notation used in

[15], we designate the spectral radii as p(SkL) and p(SkB).

We are indebted to Dan Boley, Bill Buzbee, and Molly Mahaffy

for much support and encouragement during the evolution of this

work. Bill Buzbee aroused our interest in the problem and provided

the basic support, as well as many fruitful discussions. Dan
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Boley wrote the original code that was used for experimentation and

optimization of the results of [3]. Molly Mahaffy revised Boley's

code and carried out the computations described in Section 6. These

computations were performed on the Cray-i at the Los Alamos

Scientific Laboratory.

2. Iterative Methods

In this section we describe the basic iterative schemes of

interest. Consider a system of linear equations

(2.1) AX - Y

where A is an R x R matrix. Block iterative schemes for the

solution of (2.1) are completely described by describing a par-

tition of the R-vectors into blocks. Specifically, suppose we
imagine all R-vectors X partitioned into block vectors of the form

(2.2) q X- (Xl, X2 , ... , XR') t

where each X. is itself an Rj-vector and (of course)

R'

(2.3) " R a R
j -

Corresponding to this partition of vectors the matrix A is natu-
rally partitioned into blocks

A Aij

where each Aij is itself an Ri x R. matrix. The block Jacobi
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iterative scheme associated with this block structure Is now given

by

(2.4) A. X Vl) u A X(V) +y
JOS Js s

The corresponding Gauss-Seidel iterative scheme is

(2.) A. xV+~ u A.X(V+l) - A Ve) . Y
(2.5 A 1 jix"' s 5 js S

while the successive overrelaxation (SOR) iterative scheme with

overrelaxation parameter w is

(2.6) A.. X~v1') w 1 A. x(vl) . W Aj X(V)

A.. (1 -w) X *) wY

In every case we have a splitting

(2.7) A -M - N

and the iterative scheme takes the form

(2.8) M4 Xv) N i~xv) + Y

In particular, for the block Jacobi scheme

(2.9) N a diagonal (Ajj).

For any such splitting, let

(2.10) 0 max l1Ix ; det(M - N) 01
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It is well known (6, 10, 22]) that if A is nonsingular then the
iterates XCV) converge to the unique solution X of (2.1) inde-

pendently of X(0 ) if and only if

(2.11) - I 

Returning to our problem (1.6), we see that our vector X is
an R-vector, with R * P2 , corresponding to the two-dimensional grid

vector U n V Furthermore, (1.7) and (1.8) define two distinct

partitions of V.
It is not difficult to see that both partitions lead to Jacobi

iterative schemes that satisfy block property A. Hence the Gauss-
Seidel spectral radius and the SOR spectral radius, as well as the
optimal choice of w, are determined by the spectral radius o of
the Jacobi iterative scheme.

The problem studied in this report is: for each of the block
Jacobi schemes, k-line and k x k block, determine the asymptotic
behavior of p as P . i.e., as h o 0).

We therefore study the generalized eigenvalue problem

(2.12) X M V = N V

where M is given by C2.9) for the two partitions (1.7), (1.8). In

addition to block property A these splittings also have the follow-

ing properties:

M = M* a M , N N* Nt ,

M is positive definite,
C2.13) N is nonnegative (each of its entries is nonnegative),

M is an M-matrix (its inverse is nonnegative).

3. Estimating p, k a 1

The case k a 1 is easily handled by the method of tensor pro-

ducts: see [12, 23]. Here we merely record the results.
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Let P(S1L) denote the spectral radius of the Jacobi iterative
scheme based on a block partition into single lines. Then

(3.1) P(S1L) 2 cos irh 1 - 32 h2
E- -CO 5 h1)

Let P(SI'B) denote the spectral radius of the 1 1 block
Jacobi iterative scheme. This is "point" relaxation and we have

(3.2) p(S12B) = 4 cos r h -, 2 (1 - 1 I2 h2)

4. Estimating o, k > 2. Preliminaries
In this section we develop some general properties of our

particular Jacobi iterative schemes. We use these properties to
reduce the problems to one-dimensional eigenvalue problems
essentially via "separation of variables."

Because our splittings satisfy block property A we know
that if A is an eigenvalue of (2.12), so is -X (see [22, 23, 24]).
M7 is positive definite and N is symmetric, so all the eigenvalues
of (2.12) are real (see [6]), and thus p is characterized byiti

(4.1) =max (NX,X)
X#O TE-?T7

where C , ) denotes the usual vector inner product

(4.2) (X,Y) - Xty - E Xi 5i

Let k >_ 2 be a fixed integer less than P. Assume that P is
chosen so that k divides P -- that is, for some integer Q,

(4.3) P = kQ
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II

A unified approach to our two problems is provided by the

following convenient representation of N in each case. Consider

the one-dimensional operator acting on vectors

/t
(4.4) (" C 1 , 02 , ...' Op t

as follows: for 1 < s < Q-1 , 0 < j Ik-i

{o , 2 j k-1

(4.5) (N 0)ks~j ks.l, j 0 0

ks ' 1 .

Let Nx and Ny be the two-dimensional operators which act on grid

vectors V - (Vi) in the following manner: Nx acts on V only in
the x direction, i.e., the first subscript, and in that direction

N. acts as N. Similarly NY acts on V only in the y direction.

For example, for 1 < s < Q-l, 0 < i < k-I

0 , 2 i<k-l

(4.6) (Nx V)ksi,j Vks+l,j i 0kij ks,j 1

A careful examination of the two partitions of the matrix A

yields the first lemma.

Lemma 4.1: For the k-line Jacobi iterative scheme

(4.7a) N w N .
y

For the k x k block Jacobi iterative scheme

(4.7b) N N x + Ny
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Lemma 4.2: Let p(SkL) and p(SkB) be the spectral radii of the

k-line and k x k block Jacobi iterative schemes respectively.
* Then

(4.8a) k O (h) < p(SkL) <

(4.8b) k2 + O(h) < p(SkB) <

Proof: We first obtain the lower bounds of (4.8). Let U *(U..j)
be the grid vector

(4.9) U i - sin arih -sin irjh

Then

-1U ( ,U)
(MUT (AU,U) + (NU,U)

However, U is an eigenvector for A and

AU - (6 - 4 cos 'ih)U a (2 0(Oh2 ))U

%henlce

(4.10) (NU (NU,U)

~MUUJ (2 + O(hZ)) (U,U) + (NU,U)

A direct calculation using the "smoothness" of U and the form of
N (see (3, 14, 15]) shows that

(4.11) (N~ U,U) a (2/k + 0(h)) (U,U)

(N yU,tl) w (2/k + 0(h)) (U,U)
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We put (4.7) and (4.11) into (4.10) and use (4.1) to obtain the
lower bounds of (4.8).

Let V be an eigenvector associated with the eigenvalue p. Then

p M V aNV

Subtracting pNV from both sides gives

(4.12a) A V =uN V

where

(4.12b) '

Hence

(4.13) (AV,V) au(NV,V)

It is an easy matter to see, using the explicit eigenvalue of A
or the Gerschgorii theorem, that

AMoreover, the definition of N shows that

(4.14b) (N yV, V) < (V, v)

(4. 14c) ( [N1 x +i, N1v'v) .12 (V,V)

Thus (4.13) and (4.14a), together with (4.14b) or (4.14c), show

that 2 <u or 2 <2u~, respectively. The upper bounds of (4.8)

now follow at once.
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Let

*(4.15) o " _

We rewrite (4.12a) as

(4.16) a A V - N V

Any positive eigenvalue a of (4.16) corresponds to a positive

eigenvalue X of (2.12) and conversely via the relationships

(4.17a) a -

(4.17b) =

Because a is a monotone increasing function of X (and conversely)

we seek the largest positive eigenvalue a of (4.16). But A-1 is

a positive matrix and N V 0 is a nonnegative matrix, so by the

Perron-Frobenius theory [22] the largest positive eigenvalue of

(4.16) is its spectral radius, and the associated eigenvector V

may be taken nonnegative.

Let us study the eigenvalue problem (4.16). Because A is

1positive definite and N is symmetric there is a complete set of
P2.eigenvectors V() v a1, 2,.

We attempt to apply "separation of variables" to this eigen-

value problem.

Case 1: The k-line scheme.

For each n, 1 < n < P, let

(4.18) (n sin winh (n I < ,3 P

Substitution into (4.16) with N a Ny yields
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(4.19a) a An Cn) 0 *n)

where An is the tridiagonal matrix

(4.19b) An a [-1, 6 - 2 cos wnh, -1]

Each An is positive definite, so each eigenvalue problem (4.19a)

has P linearly independent eigenvectors, say O(n)cr), r 1 1, 2,
... , P. Now the vectors given by

(4.20) V ) - sin irinh -n) (r)
13

are P2 linearly independent eigenvectors of (4.16). Hence all

the eigenvalues of (4.16) are given by the eigenvalues of the P

eigenvalue problems (4.19a), n = 1, 2, ..., P.

We therefore seek the largest positive eigenvalue a of the

P eigenvalue problems (4.19a). However, each An is not only

positive definite but also an M-matrix, i.e., A-1 is a positiven
matrix. Because N is a nonnegative matrix, the largest positive

eigenvalue of (4.19a) is also the spectral radius of that problem.

Moreover, the associated eigenvector O(n) may be taken nonnegative.

Assume that has been done. Then both V, the eigenvector of (4.16)

associated with a, and *(n), the eigenvector of (4.19a) associated
with a, must be nonnegative. Therefore the representation (4.20)

shows that we must have n - 1. We summarize these facts in the

following lemma.

Lemma 4.3: Consider the k-line iterative scheme with 2 < k < P

and (4.3) holding. Then

p(SkL) o'

where a is the largest positive eigenvalue, and the spectral radius,

of the eigenvalue problem
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(4.21) aA1  - N *

and A1 is given by (4.19b) with n - 1.

Case 2: The k x k block scheme.
This case is a bit more complicated, so we proceed with a

more formal development of the argument.

Lerna 4.4: Let N a Nx + N . Consider the eigenvalue problem

(4.16) Let be the largest positive eigenvalue. Then F is a
simple eigenvalue: there is only one linearly independent

eigenvector associated with j. Moreover, the associated eigen-
vector may be taken to be strictly positive.

Proof: Consider the matrix A'IN. Because A- is a positive
matrix and N is a nonnegative matrix not identically zero, every

column of A'N is either the zero vector or a strictly positive

vector. Let T be the permutation matrix which collects the

positive columns into the first r columns, so that

Bll 0

(4.22 B . Tt AN

I B 21  0

Here B1 1 is an r x r positive matrix and B21 is a (P2 r) x r

positive matrix. Let

be an eigenvector of B with associated eigenvalue X. Then

(4.23a) BI1 X - A X

(4.23b) B2 1 X = A Y
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Thus X and X are an eigenvalue and associated eigenvector of B11 .

In particular, if A - ' then, because B11 is strictly positive,

there is only one linearly independent eigenvector X and X can be

taken strictly positive. Since (4.23b) determines Y uniquely in

terms of X, the lemma is proven.

We are now ready to reduce the eigenvalue problem (4.16) to

a one-dimensional problem.

Lemma 4.5: Let N a Nx - Ny and consider the eigenvalue problem

(4.16). Let F be the largest positive eigenvalue. Then ; is also

determined as the largest positive eigenvalue of the eigenvalue

problem

(4.24) a B *

where

(4.ZSa) " l' z' "'" 0P)t

and B is the tridiagonal matrix

(4.25b) B - [-1, 3, -1]

Proof: The matrix B is both an M-matrix and positive definite.

Therefore the eigenvalue problem C4.24) has P linearly independent

eigenvectors. Moreover, if 0 is the largest positive eigenvalue

the associated eigenvector *0 may be taken strictly positive.
Let a be an eigenvalue of (4.24) and let 0 be an associated

eigenvector. Let the grid vector V be given by

(4.26) ii - i 0

Then

oCAV)ij - a *iCS )j . a YB(S0)i
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We apply (4.24) to see that

a(AV).. *i(Nfl. *i

a (N V) ij + (Nx  V) ij (NV) ij

In other words, the grid vector V is an eigenvector of (4.16) with
associated eigenvalue a. In particular, if a - a0 and 0 a *0 then

the grid vector V is not only an eigenvector of (4.16), it is a

strictly positive eigenvector! Hence, by virtue of lemma 4.4, the

V so obtained is an eigenvector of (4.16) associated with T, the

largest positive eigenvalue of (4.16). This proves the lemma.

5. Estimating p, k ) 3

In this section we study the one-dimensional eigenvalue prob-

lems (4.21), (4.24). We shall first reduce the problem still

further by eliminating from (4.21) and (4.24) variables corre-

sponding to those equations in which

(NO) *0

In order to do this we require a specific representation of the

solution of tridiagonal systems of equations.

Let k > 3 be fixed.

Lemma 5.1: Consider the system of linear equations

(5.1a) "0j-1 Bj +j+l * 0 j 1p 2p ...9 k-2

where 0 and *k-I are given and

(S.1b) 6 > 2

Let Ep, j 0 O, 1, ... , k-2 be generated by the recursive scheme
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E0a

(52)E j = 1, 2, .**p k"2,

and set

ak a El E2 . Ek-2
(5.3) b k a Ek-2

Then

(5. 4a) *l a bk *0 ak *k-l

(S.4b) k-Z *ak O bk Ok-1

Furthermore

(5.5) 0 < E. Ej l 1

and as kc tends to do

(S.6b) a k -0

Proof: The formulae (S.4a), (S.4b) are obtained from the well
known algorithm for solving diagonally dominant tridiagonal sys-
tems; see [16, 10]. The monotonicity of the E and the bound

given n (Sjgivn i (.5) are also well kniown and easily established by induc-
tion. Finally, if kc. then EkZ2 must converge to E', a solution

* of

- 6 E + 1 *0
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Because one root is bigger than 1 and the other is smaller, the

bound (S.5) implies that E. must be the smaller root. This proves

(5.6a), and (5.6b) follows immediately.

Returning to the eigenvalue problems (4.21) and (4.24), let

1 < s < Q-2 and consider the equations satisfied by Oks-2' Oks.3'

(tks~k-l* For the corresponding equations we have CNO)j a 0.

Hence

(5.7) - ks+j-l + O8 ksj - Oks~jl a1 0 2, 3. ... , k-I

where t ks. 1 and Oksl can be taken as known. rn these equations

(5.8a) 8 - 6 - 2 cos nh

for the eigenvalue problem (4.21) and

(5.8b) 0 3

for the eigenvalue problem (4.24). In either case we use lemma
5.1 together with the equations numbered ks for s *2, 3, ... , Q-1

*and the equations numbered ks + I for s - 1, 2, ... , Q-2 to
eliminate 0 ks~j' 2, 3, ... , k-l and s - 1, 2, .. ,Q-2. For

example, the ks equation is

C ks-l + "ks - 4 ks+l] - ks~l

If 2 <s < Q-1, then with the appropriate choice of a k and bk we

have

Oks-l u bk ks + k Ok(s-l)+l

We thus obtain for 2 < s < Q-1

(59 k k(s-l)+l + - k) Oks - ks~l] ks~l
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Similarly, the (ks + 1) equation is

a I- ks + ks+l - ks+2] = ks

If 1 <s <Q-2, then with the appropriate choice of ak and bk

we have

Oks.2 m ak Ok(s~l) +bk Oks~l

Thus we have, for 1 <s < Q-2,

(5.10) a [- Oks + Ci - bk)oks~l - k ok(sl)] - Oks

Now we must eliminate 01 02 ...' Ok-l and Ok(Q-l).2'

"k(Q-l).3' -1 kQ- In these cases we have a system of k - 1
unknowns. However, the procedure is exactly the same. We collect

our results in

Lemma S.2. Let a # 0 and 0 be an eigenvalue and eigenvector

respectively of C4.21) or (4.24). Let ak, bk, and bk..1 be given

bv (5.3) with the appropriate choice of 8, either (5.8a) or (5.8b).

Let

(S.11a) sk 1, 2, ...1 Q-1

(5.11b) &2s - ks~l , s= 1, 2, ... , Q-1

* Let

(5.llc) a 1/a , U 1 +

Then yand Cl' 2(Q-1) satisfy the homogeneous system
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(S. 12a) (8 b bkl) l - Y 0Z

(5.12b) - Y & (B- bk) 2 - ak &3 '0

(5l)- ak &-'s + (0 bk) 2s~l -&2s+2 =0,

s Z 1, 2, .. ,Q-3

(5.12d) - y &2s~l + bk)& 2s+2 ak&2s,3 a 0

S a 1, 2, 1 Q-3

(.e)- ak 2(Q-2) +~ bk)&2(Q-2)+l Y & 2(Q-1)

(5.12f) Y C 2(Q-2)+l +(0 bk~l)&2CQ-1) 30

Moreover, let ji0be the smallest positive number for which the

system (5.12) possesses a nontrivial solution, then yo; 1 and

(5.13) 11

Proof: It is only necessary to verify the characterization ofv

or yo given by (5.13). However, this is an immediate consequence

cf our earlier characterization of a as the largest eigenvalue of

(4.21) or (4.24).

Corollav: Consider equations (5.12) with b k~l replaced by bk.

Let y be the smallest positive value > 1 of y so that these modi-

Lied equ.ations have a nontrivial solution. Also, consider the

system (5.12) with b k replaced by bk, Let Tbe the smallest

positive value of y so that these modified equations have a non-

trivial solution. Then

(5.14) 0 <
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Proof: Because

bk (bk+l

we see that

" bk+ - " bk

When y is a small positive number the tridiagonal matrix of (S.12)

is positive definite. If we increase some diagonal elements (for

instance, replace B - bk+1 by B - bk) we increase all the eigen-

values. Thus increasing some diagonal elements means we must raise

y to make the system singular. Therefore

YO Y

Similarly, replacing bk by bk+l makes the diagonal smaller and y

need not be so large. This proves (5.14).

Having established this corollary, we proceed to estimate the

quantities 7 and y. First we rearrange the matrices of interest.

Lemma 5.3: Let A be the symmetric tridiagonal matrix

S - y

-y- ak
A. a a k

-Y ak

-Y
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of order 2(Q -1). Let T be the permutation matrix corresponding
to the permutation

C5.15) (2j -1) - j 2j -i. (Q - 1) +

so that, letting e denote the jth unit vector,

(5.16) T l 0e -1e2, 9e2Q1

Then

(5.17a) Tt T B

where

61I E

(5.17b) [E ]

and E is the tridiagonal matrix [-a k, -y, 0] of order Q -1.

Proof: Direct computation.

We remark that in the application of this lemma we will set

b bor8 b

Now let

(5.8)V y

be a nontrivial null vector of ~.so that

(5.19) V *0
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Then (5.19) is equivalent to the pair of equations

(S.20a) Et Ey .i2 y

(S.20b) E Et X . F2 X

A computation shows that

a2 2 aak k Y aY

ak a2 Y2 ak

(5.21) EtE

32 Y2 a

ayakY

that is, E E is the constant tridiagonal matrix [akr a2 + y2, ak~

2 2 2
except that the (Q-l,Q-l) term is Y rather than ak + y. The

matrix EEt is identical to EtE except that the (1,1) and (Q-1,Q-l)

terms are interchanged.

Lemma 5.4: Let 7 and ^ be defined as in the corollary to lemma

5.2. Then

(5.22) 0 bk+1 - ak Y YO(Y

0 - bk - ak~l - (h2) 0 bk ak

and from (5.13) we have
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(S.23) 1 <1 p
W bk + ak 8 - bk - ak + ak 0(h 2)

1
8 - bk+ 1 -a k

Proof: Consider the case of Y. Then 8 8 bkl. From (5.a)

we see that if y = j then 82 is an eigenvalue of ErE. Thus by

the Gerschgorin Theorem [6]

-2 a2 k i + Zak Y~ - (a k +*Y

This establishes the left hand inequality of (5.22).

Consider the case of y. Then 8 - 8 - bk. For y < y the matrix

B is positive definite. Therefore at y a y the smallest eigen-

value of B is zero. Thus - is the smallest eigenvalue of00 E:
B 0

If n is an eigenvalue of BO, so is "r. Moreover, n is an eigen-

value of Bo if and only if n is an eigenvalue of E tE. We

conclude when y =  that 82 is the largest eigenvalue of EtE.

Let n 1 > n2 > ;0 nQ. 1 be the eigenvalues of EtE. From the

inclusion theorem [6, p. 149] and the known eigenvalues of

the tridiagonal matrix [1, 0, 1] of order Q - 2, we deduce that

- a 2 2 + 2 aky c , 1 < j c Q-2

Thus

2 2  ; 2a

k k^ k
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It is easy to see that y ' B, whence

12 2

This proves the right hand inequalities of (5.22).
Remark:. It is important to observe that the coefficient of the
0(h 2 ) term includes ak. Since ak - 0 rapidly, this term is truly
negligible.

Corollary: Let k * a . Then

(5.24) P + [1 - ,0= -4]

Proof: It follows from (5.6) that

Ef as k.*

However, equation (5.2) shows that

Theorem 5.1: Consider the k-line Jacobi iterative scheme where
k divides P and k - P. Let p(SkL) denote the spectral radius of
this scheme. Then the results shown in Figure 1 are correct up
to a term which is 0(h2).
Proof: The result for k n 1 follows from (3.1). The result for
k a 2 follows from (4.8a). The results for k ' 3 were obtained
from a computation based on (5.23) with B a 4. The column p,
was computed with the coarse lower bound of (5.23), and p2 with
the fine lower bound.
Theorem 5.2: Consider the k x k block Jacobi iterative scheme
where k divides P and k < P. Let p(SkB) denote the spectral radius
of this scheme. Then the results shown in Figure 2 are correct.
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Proof: The result for k - 1 follows from (3.2). The result for

k - 2 follows from (4.8b). The results for k > 3 were obtained

from a computation based on (5.23) with 8 - 3.

6. Computational Results

Using codes originally prepared by D. L. Boley (see [3]), Molly

Mahaffy computed approximate spectral radii for the Gauss-Seidel

iterative scheme using k lines and k x k blocks. These spectral

radii were computed by the power method. The Gauss-Seidel method

was chosen because the general theory shows that the Jacobi

iterative scheme has both p and -p as eigenvalues while the Gauss-

Seidel scheme has a simple eigenvalue on the spectral radius.

Furthermore, we also have

p(Gauss-Seidel) = [p(Jacobi)] 2

The results are contained in the following tables. In all cases

P = 128. As with Figures 1 and 2, the columns p2 and p2 were

computed using the coarser and finer bounds of (5.23), respectively.

k-line Iterative Scheme

k P- (Theory) p2 (Theory) p 2(Computed)
4 .071840 ± .259(-2) .074404 ± .242(-4) .07662

8 .071797 ± .132(-4) .071810 ± .608(-9) .07167

16 .071797 ± .351(-9) .071797 .07164

32 .071797 .071797 .07164

64 .071797 .071797 .07164

Figure 3.
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k x k Block Iterative Scheme

k p2 (Theory) p2 (Theory) 02 (Computed)

4 .146498 ± .143(-1) .160382 ± .382(-3) .16620

8 .14S898 t .296(-3) .146194 ± .10(-6) .14631

16 .145898 t .134(-6) .14S898 t .311(-13) .14590

32 .145898 ± .271(-13) .145898 .14590

64 .145898 .145898 .14590

Figure 4.

We emphasize that Theorems 5.1 and 5.2 do not require that

k/P - 0, but only that k < P. The computations show this clearly.

For instance, in Figures 3 and 4 we see that with P = 128 and02
k - 64, the largest acceptable value, p has essentially attained

its asymptotic value. These results seem to contradict the

intuitive feeling that, were M to include a much larger part of A,

the spectral radius of M-IN would be much smaller.

7. Block iterative methods and vector machines

The asymptotic convergence rate of the iterative method (2.8)

is -ln p, where P is the spectral radius of M'IN (see [22, page

67]). Equation (5.23) shows that the spectral radii and asymptotic

convergence rates of block methods for (1.6) are only very weakly

dependent on P. In contrast, these characteristics depend strongly

on P when the block methods are applied to regular problems. For

example, the spectral radius of the k-line Jacobi method for the
model problem in two dimensions is

(7.1) P(kL) - 1 - kw2h2 + O(h3 )

(see (15]), and so, neglecting higher order terms,

(7.2) p(kL-GS) * 1 - 2kn 2 h2

(7.3) P(kL-SOR) = 1 /K wh, with optimal w
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Comparison of Figure 1 with (7.1)-(7.3) shows that the asymptotic

convergence rate of the k-line SOR method is a factor of O(P//r)

greater for (1.6) than for a regular problem on the same mesh,

and for the k-line Gauss-Seidel and Jacobi methods is O(P 2/k)
greater. These conclusions also hold for k x k block methods.

The singular perturbation helps -- so much so that k-line SOR

with moderate k beats fast direct methods for (1.6).

A k-plane iterative method is the three-dimensional analogue

of a k-line scheme in two dimensions. As shown in (15], the
k-plane, k x k line, and k x k x k block Jacobi methods for (1.1)

have respective spectral radii

o(kP) = 1 3kr 2 h 2/2 + O(h )

p(k2L) = 1 - h 2/4 + O(h )

p(k 3 B) =1 k7 k2h2/2 + O(h3

Choice of a block method is influenced by storage requirements, data
transmission rates, and the underlying organizational structure of

the data. The last point is particularly telling for three-

dimensional problems, where the data structure may forbid any

convenient access except by planes. Often these considerations

force us to use 1-plane methods for (1.1). The spectral radius of

I the plane SOR scheme that gives rise to (1.6) is

p(lP-SOR) = I - ¢1T1 h + O(h2), with optimal w

An iterative sweep can be made quickly if the systems (2.4),

(2.5), or (2.6) can be solved quickly. These systems are typically

banded with half-bandwidth k. On the Cray-l they can be solved

with vector tridiagonal or vector band routines, written especially

for that machine, that run at speeds of 40 to 90 million floating

point operations (add, subtract, multiply, or divide of floating

point numbers) per second. To get advantageously long vectors,

the k lines or k x k blocks may be grouped in red-black order.

Similar considerations apply to other vector machines.
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THE HOMOGENEOUS PROPERTIES OF THE COMPRESSIBLE NAVIER-STOKES
EQUATIONS WITH APPLICATION TO FINITE DIFFERENCE METHODS

R. F. Warming, Richard M. Beam, and J. L. Steger§
Computational Fluid Dynamics Branch

Ames Research Center, NASA, Moffett Field, California 94035

ABACT, The conservation-law form of the compressible
Navier Stokes equations has the remarkable property that the
nonlinear flux vectors are homogeneous functions of degree one.
This property leads to many interesting identities of both
theoretical and practical importance. For example, one par-
ticular identity allows alternating direction implicit methods
and explicit and implicit fractional step algorithms to be easily
derived for the nonlinear equations of gasdynamics by using Pade
approximants to exponential matrix operators. For the hyperbolic
terms, the homogeneous property permits the splitting of flux
vectors into subvectors by similarity transformations so that
each subvector has associated with it a specified eigenvalue
spectrum. As a consequence of flux vector splitting, new expli-
cit and implicit dissipative finite-difference schemes are deve-
loped for first-order hyperbolic systems of equations.
Appropriate one-sided spatial differences for each split flux
vector are used throughout the computational field even if the
flow is locally subsonic. The resulting dissipative schemes are
very robust when applied to flow fields with discontinuities.
The results of some numerical computations are included. (A pre-
liminary written version of the material on flux vector splitting

9 appeared in NASA TM 78605, July 1979.)

'Present addniss: Flow Simulations, Inc., 298 Sunnyvale Ave.,

Sunnyvale, California 94086
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A TECHNIQUE FOR SYNTHESIZING THE MOTIONS OF A FLAT PLATE FOUNDATION

DURING AN EARTHQUAKE

Francis E. Council, Jr.

U1. S. Aiuny Mobility Fquilxnent Research and Development Command

Fort Belvoir, VA 22060

Abstract

A time history is synthesized by means of a computer of acceler-

ations in a flat plate foundation by first solving the partial

differential e quations for describing the displacements in the

foundation by means of a Green's tensor and Parseval's relation.

These equations are coupled to similar type equations for describing

the displacements in the surrounding medium by means 6f variational

techniques. The resulting equations are then coupled to those for

describing the motions of a building. A comparison of the results

obtaint-d by the model discussed in this paper and another model

was accomplished by taking frequency spectrums of both time histories

of the accelerations and then comparing both frequency spectrums with

an observed frequency spectrum of a building.
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I. INTRODUCTION. One of the standard approaches for describing

the displacements in a medium is to use Navier's equations of linear

elasticity. These partial differential equations are difficult to
separate into orthogonal modes such that independant solutions for

the various displacements are obtained. A different approach is used

in this paper, the coupling of the equations is maintained as the

equations for the displacements are solved. Similar type equations
for the displacements in .the surrounding medium and the foundation are

coupled together by means of variational techniques and are then mod-
ified with a foundation-structure interaction. The results of the
model discussed in this paper and another model are compared by

comparing the frequency spectrums of accelerations of both models

with an observed frequency spectrum during an earthquake of the
building which both models had been applied to.

Although finite element methods could have been used for describing

the motion of the foundation, the methods used were those of continuum
mechanics. Since the dynamics of the structure of a building that is
attached to the foundation are better described by finite element
methods, the problem arises as to how the two approaches can be joined

together. This joining of approaches can be accomplished relatively

easily by the properties of Dirac delta functions.

II. DISPLACEMENT FUNCTIONS FOR THE FOUNDATION. The Navier's

equations for describing displacements in the foundation are given

as

(X+ 2 g) l l + 221tJ + .
2  

-

S 1 3  3t2  ()

2

2 )41C%+243_ + 2ja13  VU-~~ijt3

2 1,12 .. 2)I 122 3 ,23 " t o---- 2 (2)

2q1,31 + N2-#32 - 2)3133 --o 2, F3 3

where U1, U2 and U3  are the displacements ana P is the density

of the medium. If operat6c notation Is used where

[LI V(4)
and

[L][G] - [6] (5)

with (L], (GI , and [61 being tensors of rank two and U and
beIng tensors of rank one, then

270



(G] =-[Lf-[] (6)

and

=/fG] dxldx 2dx3dt (7)

The techniques by which [G] and i' are obtained have been
developed by Councilfi] Consequently, the elements of the Green's
tensor are identified as

[G 1  G12 G 1

[G - GZI G 2 2  G231 (8)

LC~z G3z 2

where

DP +2 2~exp iO 3 + 1~+ 2 U, 2 !)

G(()CiXT; XII2CXiq= 2 P((+

I(+(9)

(2A xp (-i-+xX 3 - p T)1 { X-X) 6 CT-k))

:1. 2G1 2 (xX x2 1 X; X1 1 x 2 ,x bt) - UP2) Ap (I (x +x -+)c

T- 2-)( )ep (. (10)

p

- +2 ).a ) 2 T)) I f5 6-) T-)~

C-1 3 (Xj 1,X 2 , X3 ,T; X1 9 X2 9 ,) XV DL 2) epC X -,43

-2)4(A-f2i)exp(i(X 2 -(:!21) 2 T)l {6(-Xo'-)8 (T-*)1
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G2 1(X1,xX 3 T:x1,x2 x 0t - {(2u~) 2exp~iX+ 2 IX T)
21 2 39 9 3 ('(i+X23 p

(12)

-2u(WL+2u)exp(i(X 3 ' p15 'T)1 {6(X-x)(-)

G 2 (X,X 21X3 T;x1 ,xx 3,t) {(-u2x 1)

(13)

-(21j) 2exp(i(X1 X+- '-I2u )1/2 )6Z'6(-)

G23(X1,X2,X3 T;x1 x, 3 t - (2u) 2expi( 1 XX- X+2u 1/2T)

(14)

G3(1,X 2 3Te 1xp , 3,) (X {(i))2(i(X1+xj*.3((T±-) "T

(15)

G3(X1 fxX 3 T;x1 ,x2,x3 t) - 1- {(21)2exp(i(X +X +X 3~~ 11 T

(16)

G3 3(X1,X2,X3 T;x1 ,x2,x3 t) - 1- X+ZU2)2epl/ 2 T)

(17)

-(2uO2exp(i(Xl+ 2 X x21)/T) {6(Z-x)6(T-t) 1

wi th

DP - {(X+2l)3exp(J(X 1+X 2+ 3 -(XU ) 1/
2 T)) + (2u)3

(16)

_____ 1/ +2p 1/2
-[(+2)(p)(ep~(X-(T)) + exp(i(X3- T)

+ exp(i(X 3- p T)2
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III. HATCH1ING OF DISPLACEMENT FUNCTIONS BY VAIATIONAL TECHNIQUES.
With the Green's tensor and the displacement function for the foundation
having been found, then this displacement function must be matched to the
displacement function for the surrounding medium in terms of the boundary
conditions. The surrounding medium and the foundation are considered as being
continuous with each other, i.e., a component of the displacement function
of the surrounding medium is continuous with the same component of the dis-
placement function of the foundation. Since the two displacement functions
were developed such that individual components are orthogonal, only one com-
ponent at a time need be considered.

Let the subscript S of a displacement function refer to the surrounding
medium and the subscript F of a displacement function refer to the foundation.
The individual components of the displacement functions would be U 1  U2
U 3 , and UFi, U F2 UF3 . respectively. As an example, consider the 8isp aceme-
ents which are perpendicular to the fault line and parallel to the surface.

Displacement functions for the foundation in terms of the displacement func-
tions in the surrounding medium which hold true in regions close to the
boundary can be constructed such that

X U F (X xx 2 'X 3 T) \ Ssi(XiXzyTT)U l •lX(1 IX2,T),T

F 2 Us5 (,xX 2,X 3-T) I 1x1"xX (19)

and

U (Xl,X ,X ,T) U ( (xl9x 2 'X3 T) ))

F1 2 9 3 ,., (x X ,Xi 3 )T ) X _-X _+a. Us (X 'X 'X3 * (2

where the symbols Ix 1  and Ix-X I +al indicate that evaluation is per-
formed with as a constant. 1i the preceding equations, a1 is the dis-
tance between he two faces. In order to maintain continuity of the
displacement functions in the foundation, then these two equations may be
used to form a conxtraint equation,

UF (XI'X 2 Xy3 T) Xia _UFI(XI'X 2'X3yT)J U I1

" ( -Va XT(Xx } US1(XiX2,X3,T)

S1 2 3'US1 9 1(21)
A similar constraint equation for the other two vertical faces is obtained
as

UF2(XX 2 X 3 ,T)
g2(X (,X2,X3,T) X 2 )

S2 (x wX )a XEX /2 US2(x 2#X3,
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The constraint equation for the horizontal surfaces of the foundation

is different since the upper surface is not in contact with the sur-

rounding medium, but a displacement function does exist in the founda-.

tion, even at the surface. Consequently,

g3 X1 *12')3 T 11F3(X 1 1X2 1X3 T)

U 3 I)X 3=X3ra

V VF 3 ( 1 . 2,X 3 J') ."2 (XX 3 p)I T)
T) 

U, 3 (X X,
) (23)

+ U Z (xl, X2'3 , r)

The three. constraint equations are then used to foia a nw equatio

such that
i=3

X(X 1 IX X 3 ,) = 1 (x ,x ,X 3 .T) + (24)

with the Euler-Lagrange equation being used such that the Lagrange

multipliers, X1 ,X2,3 are evaluated. The three equations that are

obtained from the last equation with the Euler-Lagrange equation being

used are

jI +1 A 3.3 + '-252,1 +" A'3.:1 0

UF1,2 + 1g., 2 j ' 2 g 2 , 2 - X393,2 " 0 (25)

UP 1 , 3 + Azgl, '292,3 "+ 03 " 0

With three equations and three unknowns, namely the Lagrangian

multipliers XI1  , , and X3 ,then the Lagrangian multipliers

are obtained by means of simultaneous equations as

1 0 A/D

(26)

a =;3/]Di

4 
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where

A 1  -U Flg2,293,3  1 Fl,3 g2,1932 yF1 ,293 1 92 3

(27)

(28)

3 '7 .91,391,9,2 + UF.,29,217,. - UZ]C', ,
= + Uj 2,2 , g',3 +ur ,lg1,2 v 2 3

(29)
- lJFLIq,3q2 ,2 - Url,2g1,192,3 -"UFI,391,291,3

and

D = g1 ,q,2g3, 3 + g1 ,3q2 ,1 g3 ,2 + 9 1 ,29 3 , 1 92, 3

(30)

- g1 ,392,293,1 - 'V1 ,1g2 ,3 g ,2 - 91,2g3 ,3 1 ,1

The actual prograing of this problem requires an awareness that

the displacement functions US and U were derived as wave equations
such that complex quantities are consixered. The equations have
been derived in such a fashion that the other components of the dis-
placement functions are derived in a similar fashion, the difference
being that the subscript of UF1 and US1 is changed to 2 and 3
for the other two equationi.

IV. FOUNDATION-STRUCTURE INTERACTION. Consider a rectangualr
foundation with the dimension alalong the X1 axis, a along the X2
axis, and a 3 along the X axis with the vertical ace closest t to
the epicenter being at a Aistance Xi. This same face is considered
as being parallel to the fault line,aand displacement vectors in
terms of coordinates at the corners of the upper surface can be ex-
pressed as
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I"jLx .,a /2-,0,?),1U V (Xl', 2/2,0," , Us (xz,, 2 /2., T)

•j u (xl ..-a 2/ 1-o,-t), 'U2( I 0 -a 2/2'0o,'), ' V3 (XI"-a 2/2 ,0,')

"010X1 +a,, a 2/2,0ot), Iu2(X +xaj, 'a/Z, , 'tr#3 (Xj+aj,az/, , ,)

., G,.+al,,-a2/2,o0. T), "V2 Df.+aj, -a ,/2.0. T), s.'U ,- *a.,-a /2~, 4

The components of the displacement at the center of the foundation are

expressed as

"U~1 [ + aL!2,10, 0T) , V!2| -Lea,2,0,0,T) ' a13[Xi+aj/2,0T)

while the displacement vectors at the midponts of the sides are ex-

pressed respectively as

V;L(X:L,0;0,Tl, V (x,,0,T), U3(X,,0,T)

VTj.(X..1-Ia.]Lr,O,T) U2.. .-Fa, O,O,Tr) , U3 (X, +al, O , O , T )

Ul (Xlal/2.a 2/2,0,T), U2 (X+a,/2,a 2 /2,O0"T)"

-U3 (X1+al/2 ,a2/2,O .T)

U., (X 4a,/2.-a2 /2, o,M), u2 (X-4,1 /2,-/2 ,2:oo.T),

Vs C(J+a2, -a /2, O,r)

With the upper surface of the foundation being considered, the previous
sets of vectors can be generalized as

ai a1 (, 0 IT)

a I a1  a 23

U4(Z + a - 2 16 -,0,T)

where 1_i_.3, 1.. 3.

276



The previous statements show how the time dependent displacements

for any location of the foundation can be found, this information is
used with relationships for the foundation-structure interaction. The
foundqtion-structure interaction expression is the one used by Wood (2]

The (U) of equation 10.6 of the report by Wood is identified with

U 1f the second derivative with respect to time of theU, . of
equation (6.6) of [13 is taken. (U + u ) is identified with UFI

where U of equation (24) of *thibape! is a displacement function
of the fAIndation and where U is the U modified by considering

foundation-structure interacti. The equations developed by Wood imply
that the accelerations of the foundation are considered as being measured

at the center of mass of the foundation.
The equations that were derived in this dissertation deal with a

three dimensional situation rather than a two dimensional situation

as discussed in the report by Wood. This was done in order to have
a greater applicability to the foundation which has three dimensions

and because the basic equations from which the displacements in the
foundation and the surrounding medium dealt with a three dimensional

situation with the respective partial differential equations being
coupled. If the second derivative with respect to time of one of the

equations dealing with horizontal displacements of the foundation is
taken, it must then be modified such that the effect of foundation-
structure interaction can be included. One way of considering interac-

tion is to use the report by Wood.
If equation (10.6) of the repdrt by Wood is modified in terms

of the equations of this paper, it is written as

N ( 1

F, l uj 31))

where U' is the toundation acceleration with foundation-structure

interactFon included. The expression

may be replaced by S (t) of the report by Wood such that
b

Sb(t)- + U M FU Mt (32)
b

If the foundation-structure interaction is not included, then the

previous equation is written as

96F F M (33)

Since F b(t) is the same for the two equations, then after taking

the Fourier transform of the two equations and setting them equal to
each other where Sb(w ) = H1 1 ( w ) then

U~L(J) ~i4 1t - lfl~)f~n, .(34)
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V. COMPARISON OF RESULTS. There are some difficulties in attempting
to compare results as obtained by the techniques developed in this paer

and the results which are currently in the literature. As stated by
Crouse and Jennings [3) , except for the limiting static case, the
dynamic impedance functions have not been evaluated for the case of
a perfectly bonded rigid plate on an elastic half space. Although
Wood has considered embedment of the foundation, his approach is essen-
tially an empirical one with his use of a spring and dashpot model. A

limitation of his approach is that he considers a foundation which is
square in shape. Kabori et al '] discuss a rectangulkr foundation
resting on an elastic half space but disadvantages of his approach
are that the foundation is not embeded and also that closed form solu-
tions are not obtained. This paper addresses the conditionL of an
embeded foundation in which the upper surface is rectangular.

The actual comparisons were made by comparing the results obtained
by the techniques of this paper with the results obtained from actual
observations and comparing the results obtained by the Wood model
with the same results from actual observations. The two comparisons
were then examined to see which gave a better agreement with observed
results. One way of comparing results is to compare the frequency spec-
trums of a time history of the accelerations of the foundation as obtained

by the model developed in this paper occuring in response to a synthe-
sized earthquake and a frequency spectrum of a time history of the
accelerations of the foundation obtained by the response of the Wood
model to the same synthesized earthquake with a frequency spectrum of
the accelerations of the same foundation which ras obtained from ob-
servations made during, an actual earthquake.

The observed results that were used as a basis of comparison are
shown in Figure 1 which was taken from the report by Wood. This figure
is a smoothed distribution of the amplitudes of the frequencies associated
with the Fourier transform of the accelerations observed in the basement of
a building. Each of the signifigant peaks is approximated by a Gaussian
distribution; by observing the amplitude of the peak, the frequency at
which the peak is a maximum and the width of the peak at half amplitude,
then constanti. may be evaluated in order that each of the peaks can be
described with a distribution function. The function describing the
frequency spectrum of the accelerations of the basement of the building
affected by a seismic disturbance, noise excluded, is then a sum of dis-
tribution functions as shown in equation (35).

= 2.4 exp(-(w-1.1) 2 tn(2/(.08) 2 ))

+ 3.8 exp(-(w-2.3)2 Ln(2/(O.2) )
(35)

2 2
+ 4.1 exp(-(ca-2.) 2xn(2/(0.3) )

2 2+ 2.2 exp(-0-4.0) 2n(2/(0. 3 ) ))
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The actual comparisons were made in the following manner. As
input to equation (10.12) of the report by Wood, the Fourier transform
of the time history of one of the horizontal accelerations of the sur-
rounding medium as obtained from the equations of this paper was used.
The amplitudes obtained by the use of the Wood model were copared with
the amplitudes obtained by means of equation (35) for the same frequencies;
the two frequency distributions were normalized and a standard deviation
of the differences between the two distributions was obtained. The
Fourier transform was performed by means of a Fast Fourier Transform [5]
as was the standard deviation (6] . The results as obtained by a
time history of the accelerations of the foundation by means of the
equations developed in this paper were compared with actual results
in a similar manner. The acceleration time history of the foundation
along the same coordinate axis as was used for the Wood model was changed
to a frequency spectrum by means of the Fast Fourier Transform which
was then modified to include foundation-structure interaction with the
same foundation-structure interaction expression that Wood used. The
two standard deviations that had been obtained were then compared with
each other.

The standard deviations of the differences associdted with the
Wood model was 2.5492, the standard deviation of the differences
associated with the model developed in this paper was 1.6010. Since
the standard deviation of the differences obtained by the use of the
model developed in this paper as compared with the standard deviation
of the differences obtained by the use of the Wood model was smaller, then
the model developed in this paper can be considered as an improvement
as to agreement with physical reality.
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DATA-MAP, Software for Analysis, Management and Display of
Aeromechanics' Data

Donald J. Merkley
Applied Technology Laboratory

US Army Research and Technology Laboratories (AVRADCOM)
Fort Eustis, VA

ABSTRACT. DATA-MAP (Data from Aeromechanics' Test and Analytics -

Management and Analysis Package) is a computer software system which
provides direct access to large data bases, performs analysis and

derivations, and provides the user with various options for output
display, interactively or through batch processing. DATA-MAP was
designed to utilize the Operational Loads Survey data but is general
enough to accommodate other large, time based, data sets resulting
from test or analysis. The need for and evolution of the software

system is discussed. The processing and output capabilities of DATA-MAP
are described and examples are presented, with a discussion of DATA-MAP
applications from a user's viewpoint.

1. INMODUCTION. The need for the system is derived from the
Operational Loads Survey (OLS), a flight test conducted using an US
Army AH-lG to gain experimental insight of rotor aerodynamic environ-
ments and structural dynamics of helicopters (Reference 1). A compre-
hensive data base was acquired of rotor aerodynamic forces, aeroelastic
loads, blade motions, acoustics and the attendant responses of the
control system and airframe that result from flying operational maneuvers.
Continuous and simultaneous data was recorded from 387 transducers
for 224 different flight conditions. Over 72,000 separate functions
of time were digitized and recorded on 175 magnetic tapes. A computer
program was developed to retrieve the raw data; however, it was incon-
venient, time consuming and discouraged potential users. It was
difficult to manage such a large data base without the proper software
tools. The Applied Technology Laboratory (ATL), US Army Research
and Technology Laboratories (AVRADCOX) developed the functional
descriptions for such a software system to utilize the OLS data base

and yet be general enough to use with other data sets, both analytical
and test.

The functional descriptions required the system to provide access,
data reduction, and a variety of formats of presentation of digitized
data. In addition, operation in batch, interactive and interactive
graphics modes were required. The functional descriptions also included
a need for a high degree of user interaction and computer generated
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step-by-step explanations of user inputs, user options, and menus
of data available for processing. Most analytical methods commonly
used for helicopter test data analysis, selectable by the user in
any appropriate combination, were specified. Modular design require-
ments were stressed to permit other methods to be added as the need
arises. Design requirements included execution on an IBM 360 Model 65
with Time Sharing Option (TSO), Tektronix 4014 graphic terminal,
Houston Instruments DP-l incremental plotter, and IBM 2741 typewriter
terminal. The mandatory computing language was FORTRAN IV.

Bell Helicopter Textron, Scientific and Technical Computing, was
selected as principle performer to develop this software, which is
now known as DATA-MAP. DATA-MAP meets all of the above mentioned
design requirements with an easy to learn user oriented format
(Reference 2).

2. DATA-MAP CAPABILITIES. DATA-MAP consists of two major programs,
the File Creation Program and the Processing Program, as well as
several utility programs. The basic execution sequence is illustrated
in Figure 1. The File Creation Program reads data from some storage
medium (digital tape or disc), selectively transfers data to a direct
access disc called the Master File and creates a directory of the
data thus stored. The Master File is then the data input source for
the Processing Program. The Processing Program retrieves data from
the Master File, accepts user commands interactively or in batch mode,
processes the data, and outputs data in graphic or printed formats.
The Processing Program provides the user with various analyses that
may be performed on the basic data contained on the haster File and,
in addition, certain parameters may be derived from the basic data.
The computational capabilities available to the user in the Processing
Program are detailed in Figure 2. These analyses and derivations
can be performed in multiple dimensions (e.g., time, chord, and
radius). Sequences of analyses and/or derivations can be performed
on a set of data in any appropriate combination.

Basic data and processed outputs can be presented in various
formats as shown in Figure 3. Simple X-Y plots or multiple-curve
X-Y plots are available. The user also has the options of specifying
log-log or semi-log axes, scaling on X and Y and whether the plot has
grids and/or tic marks. When X-Y plots are produced on the Tektronix
4014 terminal, the user may specify that the crosshair cursor be
activated immdiately after the plot is completed. The crosshairs
may be used to evaluate points on the screen in user coordinates.
Three-dimensional outputs in the form of contour plots and surface
perspective drawings in rectangular and cylindrical coordinate systems
are available. Auto scaling is available on all plots or the user
may specify the scale values. All output options are available on
a Tektronix 4014 terminal in the interactive graphics mode of
operation or on an incremental plotter in the batch mode. Printed
listings are available in either mode, or on an interactive typevriter
terminal.
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Four utility programs are provided in the system. Two of them are
for file initialization in the Master and Command Sequence Files.
The Command Sequence File is a permanent disc file on which sequences
of command steps can be stored. Another utility program is provided
for users to develop complete input sequences for the File Creation
Program in an interactive mode. Questions are asked to prompt input
for every possible specification. The output of the program is a
data set which can then be specified as the user input for the File
Creation program. This program assures the user that his input to
the File Creation Program is correct in syntax and that all possible
specifications have been considered, and is particularly useful to
new users of DATA-HAP. A File Maintenance Program in provided such
that a designated data base monitor at each user installation can
maintain the Master File. Various functions are provided in the
File Maintenance Program such as listing the contents of the Master
File, location of each partition, the date each was created, its
user's name and the last date the partition was accessed. The
contents of each partion may also be listed. Partitions may be
deleted, saved on tape or restored through use of this program.

3. USER CONVENIENCE. DATA-HAP was designed with consideration
of the user. All user instructions are free field format with logical
meaning and structure, and are identical for the interactive and
batch modes. Many types of errors are detected in the input process
and there are defaults for some entries.

When an invalid entry is detected the program prints a message
indicating the erroneous entry and converts to the Help mode. In the
Help mode, the user will be instructed as to the meaning of each remaining
entry and, where possible, which allowed options are available for each
entry, including the current default value for the entry, if one exists.
If the user is confused at any time during the instruction input,
all he need do is enter a question mark, 7, which will cause the
program to prompt the user for the proper input.

Scratch Files

Rather than printing or plotting the results of any process,
the user may choose to have the processing program store the output
on a scratch file. Once data has been stored on a scratch file,
that data can be used as input to an analysis or derivation or
simply used for display. One of the primary advantages provided by
scratch files is the ability to perform sequences of processes on

che same data.

Info File

The Info File is provided as a device to simplify user specification
* of large numbers of data channels representing like parameters, geometric
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positions of the parameters, and labeling information for output
processes. When specifying large amounts of input data with the
Info File, the user simply references the appropriate group by name.

CANCEL CONMANl

By entering CANCEL, all input entered for the step to that point
is canceled and the program returns to the beginning of a new step.
CANCEL at the beginning of a step is ignored.

COMMAND SEQUENCING

The Counand Sequencing function allows the user to create,
modify, execute, or delete sequences of command steps. These
sequences are stored on a permanent disc file so that sequences
created in one run of the Processing Program can be executed in other
runs of this program. In these separate runs, the operating mode
(i.e., Batch, Interactive, Interactive Graphics) may be different.
There are three motivations for using the Command Sequence capability:

- The user may want to enter instructions interactively using
the error checking process, but without execution of steps, and
then execute the identical instructions in batch mode.

- The user may want to enter instructions interactively inspect
the results immediately and then obtain line printer and incremental
plotter versions of printout and plots from batch without retyping
the instructions.

- The user may have long sequences of instructions to enter
which are generally the same for all given executions but which
involve a small number of changes.

4. IMPROVEMENTS. Improvements to DATA-MAP are currently being made to
enhance its graphics, analysis and operational capabilities in order

'1 to expand its versatility and usefulness as an engineering tool.
The improvements have been identified through exercising DATA-MAP
and planning for future use of the system. Figure 4 indicates the
types of improvements that are being made. These improvements are
anticipated to be fully functional by July 1980.

The Data Transfer File provides a uniform format for test or
simulation data in order to ease the problem of interfacing varied
data bases with DATA-MAP. Figure 5 illustrates the manner in which
the Data Transfer File will interface various data with the File
Creation Program. The File Creation Program and the Processing
Program are being modified to handle the Data Transfer File. The
Rotorcraft Flight Simulation Program (C-81) in an existing general
purpose flight simulation program which can analyze performance,
stability and control, rotor loads, and aeroelastic stability for
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single, compound, tandem, or side-by-side helicopter rotor
configurations in hover, transition, cruise or high speed flight.
The C-81 program is being modified to write the simulation data to the
Data Transfer File for access by DATA-MAP. This will not only provide
the ability to analyze and display the simulated data, but also
directly compare the simulated data with test results. DATA-MAP will
also be improved to include certain processing capabilities. Some of
these improvements are specifically conceived to facilitate direct
comparison or correlation of data from different data bases.

5. APPLICATIONS. DATA-MAP has fostered numerous applications
as shown in figure 6. The potential for future applications of the
system is good.

Two in-house projects are in progress at the Applied Technology
Laboratory utilizing the OLS data. Report-quality graphics are being
generated by DATA-MAP which will be used to document these projects.
Several other in-house projects are planned for future work.

Other activities include international cooperation with the
United Kingdom under the auspices of The Technical Coordinating
Panel (TTCP). Helicopter flight test data, recorded by the Royal
Aircraft Establishment, has successfully been partitioned on the
Master File, and processed by DATA-MAP. This data along with
selected OLS data, will form the basis of a joint Aerodynamic Loads
Work Session at ATL in March 1980 with participants from the US Army,
NASA and the Royal Aircraft Establishment.

DATA-MAP has been installed at the NASA-Ames Research Center on
a VAX 11/780 computer to reduce and analyze rotor data obtained in
the 40x80 Wind Tunnel. DATA-MAP is also being investigated to support
the Transonic Dynamics Tunnel facility at the NASA-Langley Research
Center.

Contractors use of DATA-MAP to date, has been limited. Several
contractual investigations have successfully applied the system,
thereby reducing the workload of the analyst while producing high
quality graphics (references 3 and 4). The contractors' use of
DATA-MAP will increase as they become aware of its versatility and
usefulness as an engineering tool, and are encouraged to use the
system. Contractors may be required in the future, to deliver
experimental and analytical data to the Army in a format that provides
for easy interfacing with DATA-MAP, where practicable.

DATA-MAP can play a major role in the validation and verification
of new analytical methods through statistical correlation with
available test data. DATA-MAP may also be incorporated into large
software systems, such as the Second Generation Comprehensive
Helicopter Analysis System (references 5, 6, and 7) as a post processor
to perform basic output options.
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6. CONCLUSIONS. DATA-MAP is a data analysis and managmnt
system that has been shown to be versatile and user oriented. It
provides an engineering user, not necessarily computer oriented, a
powerful tool to interactively analyze and interpret a vast amount
of data which may otherwise be unmuageable. Most of the derivations
and some of the analysis procedures are helicopter oriented; however,
other processing capabilities, data management features and the graphics
functions can readily be used for non-helicopter applications. The
management and engineers at the Applied Technology Laboratory are
enthusiastic about DATA-MAP's capabilities and are pursuing the estab-
lishment of a standard Data Item which will require future data bases
to be put in a format that will readily interface with DATA-NAP whenever
practicable.
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ANALYTICAL AND NUMERICAL CRITERIA FOR THE
EVALUATION OF INTERIOR BALLISTICS CODES

James A. Schmitt
Thomas L. Mann

Interior Ballistics Division
US Army ARRADCOM Ballistic Research Laboratory

Aberdeen Proving Ground, MD 21005

ABSTRACT. The initial validation program for a new, state-of-the-
art, transient, two-phase, two-dimensional, interior ballistics algorithm
ALPHA is presented. The verification of the ballistic cycle simulation
for a simplified gun, the Lagrange gun, is made by comparing the computed
results with the analytical solution for the core flow and by applying
consistency tests on the numerical results. The ALPHA simulation of the
two-dimensional, one-phase flow in the Lagrange gun is shown to be more
accurate than previous calculations.

I. INTRODUCTION. At the ARRADCOM Ballistic Research Laboratory (BRL),
a new, state-of-the-art, two-phase, two-dimensional, interior ballistics
algorithm ALPHA is being developed under contract to Scientific Research
Associates, Inc. 1 ALPHA will simulate the high pressure, turbulent,
viscous, gas flow, and burning propellant motion behind an accelerating
projectile as well as the heat transfer to the gun tube wall. The con-
sistently split linearized, block-implicit scheme developed by Briley and
McDonald is employed to solve the two-phase, averaged equations. The
validation of the basic models and the numerical technique in an interior
ballistics environment is an important and necessary task. As the
algorithm is being developed, we at the BRL are taking finished segments
and testing them for accuracy. By this process, we hope to have a
substantial in-house capability with a tested algorithm when the complete
code is delivered. This paper describes the initial validation program
and its findings.

The intial phase of the validation program consists of the I50mm and
20mm Lagrange gun simulations. The Lagrange gun consists of a projectile
in a perfectly smooth cylindrical tube closed at one end. The flat based
projectile is initially held fixed and an inert hot gas at high pressure
is introduced in the enclosed cavity. The ballistic cycle of the Lagrange
gun resembles that of a real gun, if the assumption is made that the
propellant burns completely before the projectile moves. The Lagrange
gun is used as a benchmark problem to validate the resolution of ALPHA's
multiple-length-scale capability, the accuracy of its unsteady viscous
gas flow simulation, and the accuracy of the core flow coupling to the
projectile motion.
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Without viscosity the gas flow in the Lagrange gun is one-dimensional
and is governed by the rarefaction wave propagation. The rarefaction wave
is generated by the motion of the projectile and traverses the distance
between the projectile and breech several times before the projectile does
exit the tube. Under the further assumptions of isentropic expansion
of each element of gas, and of constant covolume, Love and Pidduck3
developed an analytic solution for the flow field and projectile motion.
Although the formulas for the gas properties become extremely complicated
after the rarefaction wave reaches the projectile for the first time, the
gas flow during the complete ballistic cycle for a 150mm Lagrange gun is
calculated in Reference 3. If the gas within the gun is viscid, the flow
is two-dimensional because of the tube wall boundary layer and the radial
flow throughout the flow field. The radial flow is caused by the inter-
action of the larger core axial velocity which governs the projectile
motion and the slower axial velocity in the tube wall boundary layer.
Because of this disparity in the axial velocity in the radial direction,
the gas particles in the boundary layer do not keep up with the projectile.
Hence, a mass deficit is generated near the corner of the projectile and
tube wall. To rectify this deficiency, a radial component of the velocity
develops which is toward the wall near the projectile and toward the
center-line away from the projectile. Although no analytic solution exists
for the two-dimensional case, a computer simulation of the flow field was
calculated by Heiser and Hensel4 for a 20mm gun. Heiser and Hensel cal-
lated the values of the flow field variables at the projectile base, the
velocity and thermal boundary layers along the tube wall, and the radial
velocity distribution in the flow.

Section II lists the governing equations, states the boundary conditions
and summarizes the numerical procedure used in ALPHA. In Section III, the
results of the one-dimensional Lagrange gun are given. Using Love and
Pidduck's projectile base pressure formula which is valid until the rare-
faction wave reaches the projectile, a mesh and time-step resolution study,
and an analysis of ALPHA's time-step selection procedures are made. The
accuracy of the pressure and projectile velocity calculations from the
start of the projectile motion to muzzle-time are determined by comparing
them to Love and Pidduck's analytic calculations for the 150mm gun. Sec-
tion IV contains the two-dimensional ALPHA results for the 20mm gun.
These results are compared to Heiser and Hensel's. The ALPHA velocity
boundary layer thicknesses as a function of time and position are compared
to those which assume a similiarity solution. Section V contains the
conclusions.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD. The gas flow within
the Lagrange gun is assumed to be single phase, compressible, laminar,
viscous, heat conducting, and axisymmetric. The flow is also assumed
to obey Stoke's relation of viscosity and Fourier's law of heat conduction.
For this case, the governing partial differential equations in Ref. 1 can
be written as:
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where t, r, z, p, u, w, P, ip h, 0, qr, and qr are the time, radial coordi-
nate, axial coordinate, density, radial velocity, axial velocity, pressure,
viscosity, specific enthalpy, dissipation function, radial component of the
heat flux vector and the axial component of the heat flux vector, respec-
tively. The specific enthalpy is defined by h = cvT + P/p, where T is the
gas temperature. The heat flux vector is given as (-k aT/ar, -k aT/az).A The pressure is given by the Noble-Abel equation of state P(1-np) = p RT/M,
where R is the universal gas constant, and M is the molar mass with the
value of 23.8 g/mole. The specific heats (cv and cp), the ratio of specific
heats (y) and the covolume (ni) are given constants. The viscosity coeffi-
cient P is defined by Sutherlqndls law vi l T1 T

3 /-1(c2 + T) where
c, =1.458 x 10-6 kg/(s-m-1 2) and c2 =110.33K. The thermal conductivity

k is given by k =cp ji/Pr, where the Prandtl number Pr is 4y/(9y -5). The
dissipation function 0 is defined by

2 t~aaw2 uu u2 3w12
~ (Wru) +i 2- 2 w C=) +() +

rau a wl 2
- aLi a~r 1 (S)
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The motion of the projectile is assumed frictionless and is governed by
the equation

dw
m pdP = If P(r,z ,t)dA, (6)

Projectile

Area

where, in1 ,, Zp. and wp are the mass, position, and axial velocity of the
projectile. The gas properties and gun parameters that are not listed
above vary with the simulation and are given in Table 1.

TABLE 1. GEOMETRY AND GAS PROPERTIES FOR THE 1504 AND 20M4
LAGRANGE GUN SIMULATIONS

150mm Uniform Cross Section 20mm

1.698m Combustion Chamber Length .175m

6.Om Bore Length 1.115m

50kg Projectile Mass .120kg

1.0 x 10-3 m3 /kg Noble-Abel Gas 1.08 x 10 3 mS/kg

1.222 Gamma 1.271

621.09 MPa Initial Pressure 300 MPa

2666.8K Initial Temperature 3000K

The boundary conditions at the breech and projectile are the same for
all the simulations; i.e., no-slip, adiabatic walls. The boundary con-
ditions along the center-line are the symmetric conditions; u = 0,
w/ar = 0, aT/3r = 0, ap/3r = 0. Along the tube wall, the conditions vary
according to the simulation and are given in the appropriate section.
The density at a no-slip wall is determined by the normal momentum equa-
tion at the wall. The initial conditions for each simulation are given
in Table 1.
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The Eqs. 1-S are solved numerically by the Briley and McDonald split
linearized block implicit scheme. 2  All the ALPHA calculations are per-

formed using a fully implicit time-step (backward difference) and centered
spatial differences. In the ALPHA algorithm certain terms in the governing
equations can be lagged by one time-step in order to simplify the imple-
mentation of the algorithm and to enhance its efficiency. The viscosity
coefficient v, the dissipation function $, all mixed second order partial
derivatives, and the thermal conductivity k are lagged in these simulations.
The computational mesh in the axial direction is an accordian type mesh,
i.e., the first and last axial grid points are attached to the breech and
projectile, respectively, and the mesh expands as the projectile accelerates
down the gun tube. The details of the computational mesh for each simula-
tion are given in the appropriate section.

Because the boundaries of the Lagrange gun are assumed adiabatic,
the total energy within the computational domain should remain constant
throughout a simulation. A conservation test for mass and total energy
is incorporated into ALPHA. The deviation of these quantities from their
initial values is monitored throughout the calculations.

Since mesh lines lie on the computational boundaries in the ALPHA
algorithm, the axial velocity at the mesh point at the corner formed by
the gun tube wall and projectile base is double-valued. If this mesh point
is viewed as part of the tube wall, its axial velocity should be zero.
If this mesh point is viewed as part of the projectile, its axial velocity
should be the velocity of the projectile. For all the calculations
reported in this paper, the former is used. No significant difference in
the flow field occurs when the latter is chosen.

III. ONE-DIMENSIONAL LAGRANGE GUN. The geometry and gas properties
for the 20mm and 150mm gun simulations are listed in Table 1. For the
one-dimensional c-tlculation, the computational domain (the enclosed

-- cavity behind the projectile) has four cells in the radial direction, and
a uniform mesh in the axial direction. Along the tube wall symmetry
boundary conditions are stipulated. The gas in the simulations is viscous
but the symmetry condition at the wall prevents a boundary layer from
forming. A measure of the viscous effects in this flow is the deviation
of the pressure P and density p from the isentropic relation

P1 o 71=-P (7)
p 1-np PO 1-npo

where the subscript zero denotes the initial values. In every one-dimen-
sional calculation, the deviation of the left hand side of Eq. (7) is less
than 1.4 percent from the right hand side. Hence, the viscous effects of
the gas are believed to be negligible and the ALPHA simulations represent
Love and Pidduck's case.
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Because the Briley and McDonald scheme is implicit, the time-step
selection is not coupled to the spatial mesh. Consequently, both the mesh
and time-step must be chosen by the user. A mesh and time-step refinement
study reveals the controlling truncation error mechanism. The study is
performed with a uniform spatial mesh and constant time-step for the 20mm
Lagrange gun. The calculations simulate the rarefaction wave propagation
to the breech, its reflection and its return to the projectile. Because
the pressure is a significant flow variable in a ballistic cycle, we com-
pare the computed pressure value to Love and Pidduck's analytic value at
the time the rarefaction wave reaches the projectile (t = .24201 ms). The
largest difference between the pressure values occurs at this time and is
listed in Table 2. The tabulated results show that for the 10 us and 5 ps
time-step runs, the time truncation error dominates the spatial truncation
error and that only for sufficiently small time-steps does a mesh refine-
ment significantly increase the accuracy. Because muzzle-times are of
the order of milliseconds, a constant time-step of the order of microseconds
would cause a lengthy calculation. To increase the accuracy of the results
in Table 2 as well as the algorithm's efficiency, higher order temporal
finite differencing should be employed.

TABLE 2. MESH AND TIME-STEP REFINEMENT FOR THE
ONE-DIMENSIONAL 20MM LAGRANGE GUN

CONSTANT TIME-STEP (ps) % DEVIATION*

11 MESH (Azo = 17.50mm) 22 MESH (Azo = 8.33mm)

10 2.82 2.80

5 2.09 2.04

2.5 1.59 1.49

1.25 1.39 1.13

*In base pressure values between Love and Pidduck and ALPHA at

t .24201 ms.
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Initially, ALPHA had two time-step selection procedures for transient
calculations.- a constant time-step and a variable time-step based on the
maximum relative percent change in the velocity components and density.
For the runs recorded in Table 3, the variable time-step was increased by
25 percent if the maximum change was less than 4 percent, was decreased
by 20 percent if the maximum change was greater than 6 percent, and was
not altered if the maximum change was between 4 percent and 6 percent.
The results in Table 3 indicate that the variable time-step does not pro-
duce sufficiently accurate results for this class of problems. For example,
consider the 22 axial mesh and the initial time-step Ato = 1.25 ps. The
computational work column indicates that the variable time-step selection
procedure increases the At, because the computational work for the variable
time-step is less than the constant time-step. In fact, the maximum At
for this case is 10 ps. The final percent deviation between the 1.25 Ps
and 10 ps variable time-step runs are quite close. Consequently, a signif-
icantly smaller initial time-step for the variable selection does not
insure a comparably more accurate solution. Furthermore, one has expended
84 percent more computational work for only a 8.4 percent increase in
accuracy. The same behavior can also be seen for the 11 axial mesh runs.
Because neither time-step selection procedure produces a highly accurate
result with good efficiency, a new time-step selection procedure should be
developed.

TABLE 3. COMPARISON OF VARIABLE AND CONSTANT TIME-STEP SELECTION
PROCEDURES FOR THE ONE-DIMENSIONAL 20MM LAGRANGE GUN

INITIAL PERCENT DEVIATION* RELATIVE
MESH TIME-STEP VARIABLE CONSTANT COMPUTATIONAL WORK**

(UNIFORM) Ato (Ps) (Atmax=lO Vs) VARIABLE CONSTANT

22 (Az0 = 8.33mm) 10 2.14 2.80 3.8 1.7

22 5 2.04 2.04 4.7 3.3

22 1.25 1.96 1.13 7.0 13.2

11 (Az = 17.50mm) 10 2.25 2.82 2.1 1

11 1.25 2.08 1.39 3.8 7.8

*In base pressure values between Love and Pidduck and ALPHA

at t = .24201 ms

**Number of finite difference nodes evaluated to reach t = .24201 ms
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Questions on the optimal choice of mesh and time-step selection proce-
dure are not addressed. However, it is clear from Table 3 that for a com-
parable amount of computational effort, the accuracy can vary substantially
depending on the mesh and time-step. For example, the calculation with a
11 mesh and a constant time-step of 1.25 us takes only 11 percent more
computational work than calculation with the 22 mesh and variable time-
step (Ato = 1.25 us), and yet the accuracy is 29 percent better.

For the one-dimensional 150mm gun simulation a 89 uniform axial mesh
is used. Because the existing time-step selection procedures are not
adequate for this class of problems and because the axial rarefaction wave
propagation within the tube governs the entire flow field, a time-step
selection procedure based on the wave speed and the axial computational
mesh is utilized, i.e.,

Azma

At = a • -max (8)(a~w)p

where (a+w)p is the sound speed plus the gas axial velocity at the projec-
tile base and a is a input constant. This axial Courant-Friedrichs-Lewy
type condition is not used for any numerical stability reasons but as a
compromise time-step selection procedure. In the initial phase of the
simulation, the axial mesh size and the quantity (a+w)p do not change sig-
nificantly, thus, Eq. (8) approximates a constant time-step. In the final
phase the mesh size increases dramatically (by a factor of 4 or 5) and a
time-step selection based on Eq. (8) allows a larger time-step as the
spatial truncation error also increases. This time-step selection attempts
to perserve some of the accuracy of a constant time-step while allowing a
faster calculation. Furthermore, the objection of the variable time-step
selection procedure is eliminated because a smaller value of the constant
a consistently makes the time-step smaller for a given mesh and improves
the accuracy of the calculation. For the 150mm gun, the constant a is set
to one.

Figure 1 shows the Love and Pidduck's calculated pressure decrease
due to the rarefaction wave propagation. The displacement of the projectile
and subsequent gas expansion causes the rarefaction wave. At t=0, the
pressure is at its initial value. At t a .4772 ms, the position of the
rarefaction wave (given by the slope discontinuity) is midway between
the projectile and breech. At t a .9544 ms, the rarefaction wave reaches
the breech where it is reflected. This wave arrives back at the displaced
projectile at t x 2.117 ms. The rarefaction wave is again reflected and
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Figure 1. Love and Pidduck's Pressure Profiles for the 150mm
LagrangeL Gun (Adapted from Ref. 3).
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the entire process is repeated. At muzzle time, t = 10.58 ms, the rare-
faction wave is approximately halfway to the breech for the third time.
The magnitude in the slope discontinuity of the pressure curve decreases
with time due to the equilibration of the pressures during the gas expan-
sion. The projectile's position curve shows a distinct slope discontinuity
when the rarefaction wave reaches the projectile for the first time. At
the second arrival t = 7.137 ms, the magnitude of the slope discontinuity
is extremely small and cannot be discerned in Figure 1. The ALPHA results
are plotted in Figure 2. Although the times at which the pressure profiles
are plotted do not coincide with those of Love and Pidduck, the same fea-
tures seen in Figure I are present in Figure 2.

Figure 3 shows a detailed comparison of Love and Pidduck's pressure
profile with ALPHA's pressure profile at t = 2.898 ms. At the breech
and projectile (away from the rarefaction wave) the difference between the
pressure values are less than 0.2 percent. At the rarefaction wave, the
difference is less than 1.1 percent. The slope discontinuity in the
analytic solution is smeared out in the numerical calculation. The ALPHA
pressure history at the projectile is compared with the analytic values
in Figure 4. Throughout most of the calculation, the values differ by
less than 0.4 percent. The deviation increases significantly to over
2 percent when the rarefaction wave reaches the projectile. This is con-
sistent with results in Figure 3, i.e., the accuracy of the pressure value
at the rarefaction front is less than at a distance from it. The decrease
in the accuracy of the ALPHA pressure values for t > 6 ms is due to the
increase truncation error generated by the expanding axial mesh. Figure 5
shows the comparison of the projectile velocity histories. The ALPHA values
are within 0.6 percent of Love and Pidduck's values through muzzle-time.

IV. TWO-DIMENSIONAL LAGRANGE GUN. The no-slip boundary condition
along the tube wall is imposed for this calculation. Because the gas is
viscous, a two-dimensional flow develops. The tube wall is assumed to be
adiabatic as is the breech and projectile. The computational grid at t = 0
is given in Table 4. Grid concentrations along the tube wall and projectile
are used in order to resolve the boundary layer and radial flow near the
projectile, respectively. The time-step procedure for this run is the
minimum time-step which is generated by the variable time-step procedure
and by Eq. (8). The rationale for this time-step is based on the facts
that the variable time-step procedure has been used to accurately compute
compressible boundary layers and that the time-step given by Eq. (8) pro-
duces at most a 2.3 percent error in the pressure values for the rarefaction
wave propagation in the 150mm gun. By using the minimum, both phenomena
which occur in this two-dimensional problem should be accurately computed.
For this simulation, the constant a is set to one.
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TABLE 4. COMPUTATIONAL MESH FOR THE TWO-DIMENSIONAL
20MM LAGRANGE GUN SIMULATION

RADIAL AXIAL
NUMBER INCREMENTS (MM) INCREMENTS (MM)

1 .00778 (Tube Wall) .00276 (Projectile)
.01155 .00362
.01713 .00468
.02541 .00607

s .03764 .00786
.05568 .01017
.08218 .01318
.12087 .01706
.17692 .02210

10 .25710 .02861
.36977 .03704
.52395 .04796
.72696 .06207
.97971 .08035

15 1.26983 .10395
1.56520 (Midway) .13448
1.81402 .17388
1.95821 (Center Line) .22474

.29029
20 .37465

.48303

.62193

.79940
1.02524

25 1.31119
1.67080
2.11928
2.67246
3.34532

30 4.14922
5. 08793
6.15246
7.31528
8.52543

35 9.70698
10.76340
11.58988
12.09234
12.20841

40 11.92313 (Midway)
11.27290
10.33597
9.21362
8.00911

45 6.81124
S.68545
4.67230
3.79072 (Breech)
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The gun geometry, gas parameters, initial conditions (see Table 1),
and boundary conditions used in the simulation are identical to those
used by Heiser and Hensel.4  Despite this duplicate setup, the computed
muzzle-velocities differ greatly: Heiser and Hensel computed over a
700 m/s muzzle-velocity (see Figure 6) while ALPHA's value is less than
600 m/s (see Figure 7). To determine the more accurate calculation, the
Love and Pidduck rarefaction wave arrival time at the projectile was com-
pared to the calculated times. Although the development of the boundary
layer along the tube wall may alter somewhat the rarefaction wave propa-
gation, the rarefaction wave arrival times for the one-dimensional and
two-dimensional simulations should be comparable. Taking the slope dis-
continuity in the projectile pressure history curves as the arrival time
of the rarefaction wave at the projectile, we find that the arrival time
computed by Heiser and Hensel is 96 percent larger than Love and Pidduck's
value of .24201 ms and that computed by ALPHA is 4 percent smaller. Con-
sequently, we feel that the ALPHA result is the more accurate. Because a
higher pressure is maintained at the projectile base for a longer time in
Heiser and Hensel's simulation, the muzzle-velocity is larger and the
muzzle-time is shorter. The dashed curves in Figure 6 are Heiser and Hensel's
results for a breechless gun (the rarefaction wave never returns to the
projectile).

The axial velocity near the center-line for a given time can be
approximated well by a linear profile with the axial velocity equal to
zero at the breech, and equal to the projectile velocity at the projectile
base. Furthermore, the gun tube wall is at rest. This configuration re-
sembles that for the steady Falkner-Skan similarity solution for the boundary
layer with a linear core velocity. The boundary layer thicknesses away from
the projectile base are almost constant as are the boundary layer thicknesses
in the corresponding Falkner-Skan solution (see Figure 8). In the similar-
ity solution the boundary layer thickness is given by

r 1/2
6 K 1 J , (9)

where K is a proportionality constant and 4, p, E, w, are the gas viscosity
coefficient, gas density, axial position, and axial gas velocity in the core
flow, respectively. The value of the constant K at specific times is com-
puted at a calibration point (the second axial mesh point from the breech)
from Eq. (9) by using the core values and the 99 percent velocity boundary
layer thickness value which is calculated from the ALPHA velocity field.
Once the constant K is determined, a "theoretical" value of the boundary
layer thickness via Eq. (9) can be computed for the given time and for any
position from the ALPHA center-line values of , p, and i. The comparisons
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between these "theoretical" values and the actual 99 percent velocity

boundary layer values are given in Figure 8. Away from the projectile

base, these values differ by no more than 5 percent, and the ALPHA

values seem to be self-consistent. The boundary layer thickness is the

largest at muzzle-time when it reaches .22mm. Heiser and Hensel's velocity

boundary layers thickness are less than .1mm. This discrepancy is reasonable

because Heiser and Hensel predicted a larger core velocity which increases
the core Reynolds number and decreases the boundary layer thickness.

A typical velocity field computed by ALPHA is shown in Figure 9.
Because the radial velocity is of the 0(1 m/s) and the axial velocity is
of the 0(100 m/s), different plotting scales are used. Figure 9 shows
only the velocity vectors for a selected number of mesh points. If the
velocity vectors at each mesh point would be shown, the high concentration
of grid points would obscure the flow picture near the wall and projec-
tile. The ALPHA velocity field does not change qualitatively but only
quantitatively in time. The axial flow in the core accelerates from zero
at the breech to the projectile velocity. The tube wall boundary layer
can clearly be seen. Figure 9 does not show the small non-zero radial
velocity in the interior of the computational domain and away from the
projectile, because their magnitudes are so small. Close to the projectile,
the radial flow reverses direction and significantly increases in magni-
tude. The radial flow is developed in order to rectify the mass deficit
at the corner of the projectile and wall which is caused by the boundary
layer along the wall. Figure 10 shows Heiser and Hensel's velocity field
at two times. Despite the fact that these velocity fields are near muzzle-
time and are only 0.1 ms apart, they differ significantly in the radial
component. The ALPHA velocity field is more consistent with the flow field
mechanisms.

V. CONCLUSION. The initial validation program for ALPHA via the
Lagrange gun reveals several important facts. (1) Higher order temporal
finite differencing schemes should be used to increase ALPHA's accuracy
and efficiency. (2) A better time-step selection procedure should be
developed for the class of problems involving unsteady wave propagation.
(3) Despite a relatively coarse core mesh and large time-step, ALPHA can
compute the one-dimensional rarefaction wave propagation to within 2.3 per-
cent and projectile motion to within 0.6 percent. (4) ALPHA's simulation
of the two-dimensional Lagrange gun is more accurate than previous calcula-
tions. (5) The gun tube wall boundary layer thickness computed by ALPHA
is consistent. (6) ALPHA calculations conserve mass and energy to within
0.3 percent for a complete simulation.
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The importance of the analytical solution of Love and Pidduck in
this study cannot be over emphasized. This analytic solution is used, at
least partially, in forming four out of the six conclusions above. Further-
more, in the initial validation program of a new code, an analytic solution
is superior to experiments, because the uncertainties in the experimental
set-up and the errors in the measurements, are absent.

The future work with ALPHA consists of testing higher order temporal
finite difference schemes and time-step selection procedures for the
Lagrange gun environment. A detailed study of the radial flow and its
effects on the temperature field especially near the projectile as well as
the affects of the multi-valued corner point (at the intersection of the
gun tube wall and projectile base) on the flow field will be studied.
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FINITE E T COMBUSTION INSTABILITY - INTERNAL BALLISTICS ANALYSIS

Robert M. Hackett
U.S. Army Missile laboratory

Propulsion Directorate
Redstone Arsenal, Alabama 35809

ABSTRACT. Using sophisticated numerical analysis techniques, it
is now possible to predict the instability of a solid propellant rocket
motor subjected to small, combustion amplified disturbances. This cap-
ability is of considerable importance because of the probability of
combustion instability in certain motors and the attendant jeopardy to
successful motor and system operation. It is also important that the
solid rocket motor designer be able to utilize this analysis capability,
in conjunction with the internal ballistics analysis, which has been
the key design component. Clearly, the integrated utilization of both
techniques can provide a more efficient motor design procedure.

This paper describes the development of a finite element combus-
tion instability analysis package for solid propellant rocket motors,
which can be automatically coupled with an internal ballistics code to
predict system response at any time from ignition to burnout. The pro-
gram provides for the automatic coupling of the output from the ballis-
tics code to a mesh generator so that the cavity-grain geometry is
redefined in such a manner that a new finite element mesh for cavity
and solid propellant is created at any selected time during the period
of performance. Thus, the mesh corresponding to any burn distance can
be automatically generated. The stability computations are based on
the state-of-the-art in linear analysis of combustion instability: the
irrotational motions of an inviscid, compressible fluid are coupled to
the motion of a nearly incompressible, linearly viscoelastic solid, and
the effect of the flow field and combustion on the acoustic oscilla-
tions is determined.

The analysis package is operational in status and has been em-
ployed to predict the combustion response of various types of solid
propellant rocket systems. Agreement with a limited number of closed-
form solutions and experimental observations has been obtained.

1. INTRODUCTION. The phenomenon of oscillatory combustion insta-
bility in solid rocket motors results from the responsiveness of the
combustion process to oscillations in the flow environment. Because of
the high probability of combustion instability in low signature motors
and the attendant jeopardy to successful motor and system performance,
the capability of instability prediction is of unquestioned importance.
The state-of-the art in the field of linear analysis of combustion in-
stability is based on a perturbation of the acoustic field in the
burning propellant and an evaluation of the growth/decay coefficient
associated with the acoustic pressure waves; a positive coefficient
indicates an amplification of the waves and, therefore, instability,
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and a negative value implies attenuation of the waves and stability.

In early 1975 the development of a Standardized Stability Predic-
tion Method for Solid Rocket Motors (ref. 1) was begun by Aerojet Solid
Propulsion Company under contract with the Air Force. It was decided
that this method would employ the NASTRAN finite element fluid analysis
option which was developed for rocket acoustic cavity analysis (refs.
2,3,4,5). The NASTRAN finite element analysis is axisymmetric and ap-
proximates the effect of radial slots (fig. 1) on the cavity acoustics.
As long as the slot width is relatively narrow, the approximation pro-
vides an accurate model of the cavity acoustic response, but as the
slot width increases, the accuracy diminishes. The NASTRAN option as
used in the standardized method does not provide for the coupling of
the vibratory response of the solid propellant grain to that of the
acoustic cavity and hence does not provide a means of evaluating the
damping of the acoustic oscillations by the propellant grain response.
An additional limiting feature of the standardized method is that it
employs a post processor, separate from the other analyses, for evalua-
ting the growth/decay coefficient.

Y

REPEATING

SEGMENT

• RADIAL

SLOT

Figure 1. Three-dimensional cavity-solid propellant model.

The three-dimensional analysis package presented herein was devel-
oped primarily to provide 1) more generality, and therefore more accu-
racy in modeling complex cavity geometries, 2) a means of predicting
the damping of acoustic oscillations by the solid propellant grain, 3)
an integrated program designed solely for the purpose of combustion in-
stability prediction with ease of use, and 4) a means of coupling the
combustion instability analysis to an internal ballistics analysis.
The developed package possesses all of these positive features as well
as certain inherent, somewhat unappealing features associated with
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"bigness" which will be pointed out later in the paper.

The main aspects of the developed three-dimensional code are
listed below and will be elaborated upon subsequently in the paper:

1) utilizes a three-dimensional finite element mesh generator
especially adapted to provide input to the program

2) utilizes the principle of dihedral symmetry which enables a
consideration of only the smallest repeating geometrical seg-
ment

3) couples the response of the gas cavity with that of the solid

propellant grain to enable the calculation of the frequency of
the coupled system and the damping provided by the propellant
grain

4) provides for modeling the propellant grain as a nearly incom-
pressible material (which differs from the common minimum
potential energy formulatio4

5) utilizes the principle of condensation, wherein, in this case,
the fluid pressure degrees-of-freedom are designated "master"
and the solid propellant displacement and mean pressure para-
meter degrees-of-freedom are designated "slave." This enables
a major reduction in the size of the problem: the number of
eauations is reduced from the total number of degrees-of-
freedom of the coupled system to the number of fluid pressure
degrees-of-freedom

6) provides the option of considering the response of the gas
*! cavity alone (which models the cavity boundaries as being

"acoustically hard"). This option might be utilized in cer-
tain cases where a savings in computer costs or storage is a
dominant consideration. In this case the condensation ap-
proach previously described obviously would not be taken

7) calculates the three-dimensional potential flow field

8) evaluates the stability integrals for the calculation of the
net driving/damping coefficient for each mode.

2. FINITE ELEME MESH GEERATION. It is only necessary to de-
velop a finite element mesh for one repeating segment (fig. 1) of the
total cavity-grain rocket geometry. This is true because of the em-
ployment of the principle of dihedral symmetry in the program. Al-
though the three-dimensional element used in the program for both the
cavity region and the propellant grain is a tetrahedron (ref. 6), the
mesh is that of bricks, each brick, or quasi-hexahedron, being com-
prised of five basic tetrahedra. The breakdown of the quasi-hezahedra
into tetrahedra is performed internally. The mesh generator is an
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efficient routine which automatically creates the complete finite ele-
ment mesh, for both cavity and solid propellant regions, from a minimal
amount of input. Each repeating segment is sectioned in the longitudi-
nal or z-direction, with each section comprised of a number of quadri-
lateral parts which are identified by a counterclockwise listing of
their art boundary curves. Part boundary curves may be ellipses as
well as straight lines and their points of intersection are designated
by I,J indices as shown in figure 2.

PART 1 (CAVITY)
15. J9 I1. J1 TO 15, 1 (CURVE 1)

I1, JO 15. J1 TO 15. J4 (CURVE 21
15, J4 TO I1, J4 (CURVE 3)
I1, J4 TO I1, J1 (CURVE 4)

15, J5 PART 2 (CAVITY-SOLID
11, J5 PROPELLANT INTERFACE)15. J4 I1, J4 TO 15, 4 (CURVE 3)

y 11 J4 15. 4 TO 15, JS (CURVE 2)
IS. J5 TO I1. J5 (CURVE 5)
I1, JA TO I1, J4 (CURVE 4)

I, 31 35, .31 PART 3 (SOLID PROPELLANT)

I1, J5 TO 15, J5 (CURVE 5)
X 15, J5 TO 15, J9 (CURVE 6)

15, .3 TO I1, J9 (CURVE 7)
I1, J9 TO I1, J5 (CURVE 8)

Figure 2. Finite element mesh definition for cavity-solid
propellant.

By coupling the output of a standard internal ballistics analysis
computer code with the mesh generator one can obtain a combustion in-
stability analysis at any stage of performance, i.e., at any instant
from ignition of the propellant to burnoutas illustrated in figure 3.
This has been done through the definition of additional part boundary
curves, which conform to the geometry of the different zones of burning
for the differing cavity-grain configurations. With the transfer of a
small number of geometric parameters from the output of the internal
ballistics code to the mesh generator, a complete combustion instabil-
ity analysis can be initiated and automatically performed. The desig-
nation of these parameters and a detailed description of the development
of the coupling program are found in references 7 and 8. Presently the
coupling of an internal ballistics analysis with the combustion insta-
bility analysis is limited to the consideration of axisymmetric and
star cross-section geometries, but increased part boundary curve
definition is a matter of expansion of the program, not of additional
development.
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Figure 3. Finite element model of repeating segment with cavity-
solid propellant interface defined by ballistics
analysis output.

3. DIHEDRAL SYMERY. If a geometrically defined body is made
up of identical segments symmetrically arranged with respect to an
axis, the degrees-of-freedom for a finite element analysis can be
transformed into uncoupled symmetrical components, thereby greatly
reducing the number of equations which must be solved simultaneously
(ref. 9). A further reduction can be effected if each segment has a
plane of reflective symmetry. Dihedral symmetry is the term applied
to this latter condition. It can be seen from figure 1 that a typical
solid rocket geometry meets this requirement and, therefore, the
principle of dihedral symmetry can be employed in a three-dimensional
(cylindrical coordinate) analysis. The application of the principle
to this problem is explained in detail in reference 10 and will not be
reproduced here, but the resulting analysis will be discussed.

Employing the principle of dihedral symmetry, the program com-
putes three distinct types of acoustic harmonics: the zero harmonic,
the K harmonics, and the N/2 harmonic. The zero harmonic exists for
all cases. The number of possible K harmonics is given by

K -- 1, . . ., L (1)

where the harmonic index L is given by
N-1

L N 1 (if N is an odd number) (2a)

N -2 (if N is an even number) (2b)

where N is the number of radial slots or lobes. The N/2 harmonic
exists only when N is even. Referring to the geometry of figure 1,
then, one could calculate the zero, first, and second harmonics, the
latter two beir K harmonics. The longitudinal modes associated with

323



each harmonic are calculated as requested by the user. The result of
this calculation (eigensolution) is the natural circular frequency
associated with each acoustic mode and the corresponding acoustic
pressure distribution (normalized acoustic pressure at each finite
element nodal point) for the smallest repeating segment. The pressure
distribution for each of the other segments is then simply calculated
automatically through the dihedral transformation matrix. The acous-
tic velocity components (constant for the region occupied by each
cavity tetrahedral element) are computed from the acoustic pressure
nodal point values for those cavity elements which are adjacent to the
propellant grain.

The theoretical formulation of the complete three-dimensional
finite element analysis, in which the natural circular frequency, the

acoustic pressure distribution, and the element acoustic velocities
are calculated, is given in reference ll and will not be repeated
here. Reference 12 also presents the theoretical finite element
formulation which was used in the development of this program.

4. COUPLED RESPONSE. The presence of the solid propellant grain
can significantly shift the acoustic system frequency from that of the
gas phase alone, a portion of the acoustic energy being dissipated by
the deformable solid material. This effect can be one of the more
significant sinks for acoustic energy in both large and small rocket
motors, the amount of damping depending on the grain geometry and
mechanical properties and on the acoustic mode shape and natural fre-
quency.

In order to evaluate the coupled cavity-solid propellant grain
response it is necessary to model, by the finite element method, both
cavity and grain. This, of course, greatly increases the size of the
problem to be solved, from the standpoint of number of initial degrees-
of-freedom. The coupled finite element formulation of reference 12,
which is coded in the three-dimensional program, is expressed in matrix
form by:

F io , Ug.o~}t - O
T I MI

where [ is the fluid inertia matrix, C is the fluid compressibility
matrix, F4 is the solid stiffness matrix, M is the solid consistent
mass matrix, C4 is the matrix which couples acoustic pressure degrees-
of-freedom to solid displacement degrees-of-freedom, [p is the acous-
tic pressure vector, (Alis the solid displacement vector, [HI is the
mean pressure parameter vector (to be elaborated upon later), and Nt

*is the eigenvalue of the coupled system.

The structural damping can be attributed to the out-of-phase re-
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sponse of the solid propellant grain, which is measured in terms of
the complex shearing modulus of the grain, which, in turn, results in
a complex eigenvalue for the coupled system. The imaginary part of the
complex eigenvalue obtained from the eigensolution is the natural cir-
cular frequency of the coupled system while the real part is the struc-
tural damping rate.

Since the complex shearing modulus is frequency dependent, a
series of iterations may be necessary before the accurate value of
complex modulus for input into the program is determined.

5. PROPEILANT GRAIN MODELING. Since the propellant grain is only
accurately modeled as a nearly incompressible material, the well-known
standard Navier displacement formulation, in conjunction with the Ritz
procedure, would lead to inaccuracies in the finite element modeling of
the grain. In order to avoid this situation the solid finite element
formulation utilized in this program is that of a linear displacement-
linear mean pressure tetrahedron (ref. 13). It is similar to the
Herrmann variational formulation (ref. 14), which employs a linear dis-
placement function and a constant mean pressure function. The finite
element modeling of the propellant grain used in this program is out-
lined in detail in reference 12 and will not be repeated here.

6. EIGENVALUE ECONOMIZER - CONDENSATION. The extraction of ei-
genvalues and eigenvectors is a much more expensive operation than is
the solution of simultaneous linear equations. It requires roughly
twice as much time to extract a single eigenvalue as to do a single
"static" analysis. In order to reduce or "condense" the number of
degrees-of-freedom in the eigensolution, the following technique is
utilized in the three-dimensional program. Further details of the
method are found in reference 15.

The original formulation of the coupled system is given by equa-
tion 3, where the number of degrees-of-freedom is equal to the number
of cavity nodal point pressures, plus the number of solid propellant
nodal point displacement components, plus the number of solid propel-
lant nodal point mean pressure parameter values (one at each propellant
grain nodal point), for the analyzed repeating segment. The condensed
formulation is given by:

where

[Kri = UT K] [K(5a)
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and I riI t
p I p

CF1r3 [0 1UT[OIUTI

where I is the identity matrix. The relationship between initial and
reduced degrees-of-freedom is

{:r U:T{ (6)

7. UNCOUPLED RESPONSE. Although one of the most important fea-
tures of the three-dimensional program is the coupled cavity-propellant
response, the option of a cavity analysis alone is available to the
user. In this case the cavity-solid propellant interface is modeled
as an "acoustically hard" boundary. The cavity only option would
greatly reduce the solution time and cost and would, in some cases,
perhaps suffice. The user need make only two simple adjustments to
the input data, and these adjustments are described in the user's guide
to the three-dimensional code (ref. 16).

8. POTMNIAL FLOW CALCULATION. A separate operation is carried
out in the sub-routine which performs a potential flow analysis for the
purpose of determining the mean flow field in the rocket cavity. As in
the case of the eigensolution, only the smallest repeating geometrical
segment need be considered, and, for this calculation, only the cavity
portion of the segment with the proper boundary conditions. The same
general formulation of the finite element model equations of motion is
utilized except that, in this case, the fluid is considered to be in-
compressible. The mass flow into the cavity from the burning propel-
lant surface is modeled as a cavity-solid propellant interface nodal
point quantity. It is calculated by summing the interface surface
areas associated with each nodal point lying on the cavity-solid pro-
pellant interface. The solution of the resulting set of linear equa-
tions for the mean flow velocity components (constant for each cavity
tetrahedron) is explained in reference 11 and will not be discussed
here.

9. EVALUATION OF STABILITY INTEGRALS. The final operation con-
sists primarily of the evaluation of the stability integrals associated
with the various driving/damping coupling mechanisms which occur in the
cavity chamber in the presence of combustion and flow. The stability
integrals presently incorporated into the program are those derived in
reference 17 for the three-dimensional case, along with the flow-
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turning formulation also found in reference 17. The use of linear
pressure (and therefore constant velocity) tetrahedral elements to
represent the cavity region enables an explicit evaluation of the sta-
bility integrals, given the acoustic nodal point pressures and element
velocities and the mean flow element velocities from the finite element
solutions. At present the code does not contain a routine for evalu-
ating nozzle damping or particulate damping. These additional calcu-
lations will be added.

The evaluation of stability integrals is for the purpose of calcu-
lating the driving/damping coefficient, , a fact well-known to the
combustion community. A positive a indicates a stable mode. The net
value of a computed by the three-dimensional code is a summation of the
computed values of a P (pressure coupling), a (velocity coupling),

aFT (flow-turning), and aSD (structural damping). The value of aSD

is obtained from the complex eigensolution described in an earlier
section; the other three a-values are obtained from the evaluation of
the stability integrals. It is known that the pressure coupling
mechanism always drives the acoustic oscillations, that the velocity
coupling mechanism may either drive or damp the oscillations, and that
the flow-turning mechanism always damps the oscillations. Response
factors (refs. 18 and 19) are input into the program as multiples of
the stability integrals for the calculation of the a's obtained from
the different coupling mechanisms. These propellant grain-dependent
response functions are obtained from other analyses and utilized as
direct input into the three-dimensional program.

10. COMPARISON WITH ANALYTICAL SOLUTIONS AND EXPER TTAL
OBSERVATIONS. In order to affirm the accuracy and usefulness of any
numerical analysis package it is necessary to make comparisons of re-
sults obtained numerically with available analytical closed-form
solutions and experimentally obtained results. In the case of a com-
plex analysis procedure such as that of combustion instability,
available bases of comparison are limited in both regards. The
following results are presented to support the contention of accuracy
and utility of the developed package.

Analytical Comparisons. A right circular cylindrical cavity 254mm
long and 254nmm in diameter was modeled using an 180 repeating segment
consisting of 32 quasi-hexahedral elements, 4 in the radial direction
and 8 in the longitudinal direction. Acoustic frequencies correspond-
ing to the first and second longitudinal modes*(1L and 2L), the first
tangential mode (1T), the first tangential-first longitudinal mode
(1T-1L), and the first radial mode (1R) were solved for and are com-
pared with the corresponding analytically obtained frequencies of the
cavity. The values are shown in table 1.
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Table 1. Numerically and Analytically Calculated Acoustic
Frequencies For Cylindrical Cavity.

Frequncy (Hz)
Mode Analytical Finite Element

Solution Solution

IL 2000 1988
2L 4000 4042
IT 2400 2378

IT-iL 3124 3151
IR 4994 5033

As described earlier, a separate potential flow calculation is
made in the combustion instability analysis package for the purpose of
evaluating the stability integrals. A comparison of the finite element
potential flow solution with the analytical solution for the cylindri-
cal cavity is shown in figure 4.

5
FINITE ELEMENT Y
SOLUTION

4 I

3 -1

all/-rn Z'RADIUS \
S2 FINITE ELEMENT MODEL

ANALYCALISO SEGMENT
ANOLTICAL (CAVITY ONLY OPTION)

0

LENGTH OF CYLINDRICAL CAVITY

Figure 4. Comparison of finite element and analytical potential
flow field solutions for a circular cylinder.

The accuracy of the finite element frequency calculations is seen
in table 1. These results are highly favorable, especially when con-
sidering the relatively small number of elements used to model the
cavity. The somewhat less satisfying agreement in the case of the

finite element potential flow solution can be attributed to the rela-
tively small number of elements, especially near the exhaust end of the
cavity where the axial velocity component has its largest value.
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Additional comparisons with closed-form solutions of the same type have

yielded results similar to those cited here.

Exmerimental Comparisons. The experimental data used for compari-
son purposes were obtained from Hercules, Inc., Allegany Ballistics
Laboratory (ABL) in Cumberland, Maryland and result from testing of an
early experimental model of the Smokeless CHAPARRAL Motor Assembly,
conducted in early 1977. The finocyl geometry of the pulsed motor and
the finite element model consisted of a small diameter-to-length ratio
cylindrical cavity having four radial slots over approximately one-
third of the cavity length. Experimental longitudinal mode frequency
and stability data can be compared to corresponding finite element
analysis results in table 2. The test data and numerical results found
in table 2 correspond to a burn distance of 8.03mm. The finite element
analyses were performed on the CDC 6600 computer at Redstone Arsenal.
The lack of close agreement observed when comparing corresponding net
Q-values can to some extent be attributed to the use of somewhat in-
accurate values of response factors, which are presently considered in
the program as properties of the propellant, but which are also flow-
dependent. However, the qualitatively good agreement between corres-
ponding values can be observed.

Table 2. Smokeless CHAPARRAL Data and Finite Element Analysis
Results.

Test Dt Finite Element An gy
Frequency (Hz) a (sec-1 ) Frequency (Hz) a (sec- 1 )

323 -94
290 -41 307 -198

644 -266
640 -290 593 -220

909 -192
927 -145 909 -148

The results from additional finite element analyses of the early
experimental model of the Smokeless CHAPARRAL Motor Assembly are
shown in table 3. The most notable aspect of this set of finite
element analysis results is the prediction of instability in some of
the tangential modes (positive values of a). This compares quite
favorably with ABL tests of the same assembly, which exhibited clear
instabilities in tangential modes. Also, ABI test results showed
5-6 separate tangential modes evident in the frequency range of 9000-
20,000 Hz.
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Table 3. Higher Acoustic Mode Finite Element Analysis Results
For Smokeless CHAPARAL Motor.

Frequency
Harmonic Mode Nez) (sec-1)

1 7992 -147
2 13,476 + 33

K (=1) 3 15,303 - 55
4 15,915 + 46
5 17,907 - 92

1 8981 -232
2 15,948 +162

N/2 (=2) 3 20,516 -119
4 23,693 - 62
5 25,644 - 85

The comparisons between numerical and experimental results, which
can be made from tables 2 and 3, would appear to support the contention
that the developed finite element package can be of valuable use in
predicting the instability of solid rocket systems.

11, CONCLUSIONS. The developed computer package performs a
linear analysis of the irrotational motions of an inviscid, compres-
sible fluid coupled to the motions of i nearly incompressible, linearly
viscoelastic solid, performs a linear potential flow analysis of the
irrotational motions of an inviscid, incompressible fluid, and then
determines the effect of the flow field and of combustion on the calcu-
lated acoustic oscillations. There are obvious limitations attached
to any code which is as basic as the restrictions listed above dictate,
but it is felt that the developed code presented herein is probably as
sophisticated as the present state-of-the-art warrants. It is viewed
as having much potential as both a design and a research tool. As the
state-of-the-art in combustion technology advances, it is felt that
the code can be relatively easily revised and updated to include the
new technology; at least it was designed with that provision in mind.

One of the most attractive features of the code is the ease of use.
Other extremely important attributes are the fact that it is three-
dimensional, that it performs a coupled cavity-solid propellant analysis
(or, alternatively, a cavity-only analysis), and that all analyses are
automatically linked. Features of the code which do not enhance its
reputation also exist, and they too should be pointed out. It is a
large program requiring a large amount of storage and it may require
long run times, as is the case with any three-dimensional finite ele-
ment program. Presently, the entire program is in-core computation,
but this will, in all probability, be modified. The eigenvalue routine
used in the analysis may not be the most efficient one available. This
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possibility is currently being investigated, and if a more efficient
routine can be found, it will be used in place of the one presently
employed. In certain instances a two-dimensional (axisymmetric) un-
coupled analysis provides sufficient accuracy, and for such cases use
of the three-dimensional code might not have merit.

It is felt that the demonstrated attributes of the three-
dimensional code far outweigh any foreseen disadvantages, and that
it can provide the means of performing important, and heretofore im-
possible, analyses.

REFERENCES

1. Standardized Stability Prediction Method for Solid Rocket Motors,
Vol. I (Multidimensional Computer Program Users Manual, by
D.P. Dudley and R.D. Waugh) and Vol. III (Axial Mode Computer
Program Users Manual, by R.L. Lovine and R.C. Waugh), Aerojet
Propulsion Company, Sacramento, California, February 1976.

2. Herting, D.N., "Application Manual for NASTRAN Acoustic Cavity
Analysis," The MacNeal-Schwendler Corporation, Report MS 116-2.
May 1971.

3. Herting, D.N., J.A. Joseph, L.R. Kuusinen and R.H. MacNeal,
"Acoustic Analysis of Solid Rocket Motor Cavities by a Finite
Element Method," The acNeal-Schwendler Corporation, Report
v5 116-3.

4. NASTRAN Cyclic Syiimetrv Caability User' s Guide. The MacNeal-
Schwendler Corporation, EC-180, July 1972.

5. Analysis of a Solid Rocket Motor Cavity, The MacNeal-Schwendler
Corporation, Report MS 200, November 22, 1972.

6. Zienkiewicz, O.C., The Finite Element Method in &nineering
Science, McGraw-Hill, London, 1971.

7. Hackett, R.M., "A Coupled Interior Ballistics-Finite Element
Combustion Instability Analysis Procedure," Technical Report
T-78-72, US Army Missile Research and Development Command,
Redstone Arsenal, Alabama, July 1978.

8. Hackett, R.M., "A Coupled Interior Ballistics Finite Element
Combustion Instability Analysis Procedure - Part II," Technical
Report T-79-68, US Army Missile Command, Redstone Arsenal,
Alabama, June 1979.

9. MacNeal, R.H., R.H. Harder and J.B. Mason, "NASTRAN Cyclic
Symmetry Capability," TM X-2893 NASTRAN: Users' Experiences,
NASA, September 1973, pp. 395-421.

10. Hackett, R.M., "Three-Dimensional Acoustic Analysis of Solid
Rocket Motor Cavities," Technical Report RK-76-7, US Army Missile
Command, Redstone Arsenal, Alabama, November 1975.

11. Hackett, R.M., "Three-Dimensional Finite Element Acoustic Analysis
of Solid Rocket Motor Cavities," Journal of Sacgecraft and Rockets,
v 13, n 10, October 1976, pp 585-588.

33)

S-'S



12. Hackett, R.M., and R.S. Juruf, "Three-Dimensional Finite Element
Analysis of Acoustic Instability of Solid Propellant Rocket
Motors," Proceedings of the 13th Annual Meeting of the Society of
Engineering Science, Inc., Hampton, Virginia, November 1976,
pp. 1641-1651.

13. Hughes, T.J.R. and H. Allik, "Finite Elements for Compressible
and Incompressible Continua," Proceedings of the Symposium on
Application of Finite Element Methods in Civil Engineering,
Vanderbilt University, Nashville, Tennessee, November 1969,
pp. 27-62.

14. Herrmann, L.R., "Elasticity Equations for Incompressible and
Nearly Incompressible Materials by a Variational Theorem,"
Journal of the American Institute of Aeronautics and Astronautics,
v 3, n 10, October 1965, pp. 1896-1900.

15. Cook, R.D., oncerts and Applications of Finite Element Analysis,
John Wiley & Sons, Inc., 1974.

16. Hackett, R.M., "User's Manual for FLAP3," Technical Report
TK-77-4, US Army Missile Research and Development Command,
Redstone Arsenal, Alabama, July 1977.

17. Final Report - T-Burner Testing of Metallized Solid Propellants,
Report No. AFRPL-TR-74-28 (F.E.C. Culick - Editor) Air Force
Rocket Propulsion Laboratory, Edwards, California, October 1974.

18. Hart, R.W. and F.T. McClure, "Combustion Instability: Acoustic
Interaction with a Burning Propellant Surface," Journal of
Chemical Physics, v 30, June 1959, pp. 1501-1514.

19. Price, E.W., "Experimental Solid Rocket Combustion Instability,"
Tenth Symposium (International) On Combustion, The Combustion
Institute, 1965, pp. 1067-1082.

I@

332

I I



NUMERICAL PREDICTION OF RESIDUAL STRESSES
IN AN OVERLOAIED BREECH RING

P. C. T. Chen
U.S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL
Watervliet, NY 12189

ABSTRACT. This paper describes a numerical technique for predicting
the residual stresses in an overloaded breech ring. The numerical approach
used is the finite element method based on the incremental stress-strain
matrix and a computer program has been developed. The material behavior
is characterized by the von Mises' yield criterion, Prandtl-Reuss flow
equations and isotropic hardening rule. A piecewise linear representation
for the stress-strain curve is used. The numerical results of the stresses
in all elements are obtained for four contact conditions. The location
and magnitude of the maximum fillet stress are determined as a function of
loading. Residual stresses resulting from elastic unloading are calculated.
A satisfactory agreement between numerical and experimental results has
been reached.

1. INTRODUCTION. In guns with a sliding breech mechanims, breech
ring failures have been observed originating from the lower fillet in the
vicinity of the contact region. The observations indicate that high ten-
sile stress produced by stress concentration at the fillet was responsible
for the failure. In order to reduce the chance of failure and extend the
fatigue life, an exploratory study on the autofrettage of a breech mech-
anism was initiated. The technique is based on the production of bene-
ficial residual stresses through coldworking to counteract the high oper-
ating stresses induced by firing.

A photoplastic model made of aluminum block and polycarbonate ring
was designed (ref. 1). The maximum fillet stresses for an elastic load
as well as an elastoplastic load were determined experimentally. Residual
stress resulting from removing maximum test load was calculated. A numer-
ical investigation of the photoplastic model was made by using NASTRAN
(ref. 2). The numerical results are in good agreement with the experimen-
tal data in the elastic range of loading but not in the plastic range.
Furthermore, NASTRAN program stops before the maximum test load is reached
and residual stress after complete unloading cannot be calculated.

This paper describes a numerical technique for predicting the residual
stresses in an overloaded breech ring. The numerical approach used is the
finite element method based on the incremental stress-strain matrix and a

333



computer program has been developed. The material behavior is character-

ized by the von Mises' yield criterion, Prandtl-Reuss flow equations and

isotropic hardening rule. A piecewise linear representation for the

stress-strain curve is used. The numerical results of the stresses in

all elements are obtained for four contact conditions. The location and

magnitude of the maximum fillet stress are determined as a function of

loading. Residual stresses resulting from elastic unloading are calcu-

lated. A satsifactory agreement between numerical and experimental
results has been reached.

2. METHOD AND PROGRAM. The finite element method used here is of
the incremental type since solutions to problems involving material non-
linearity are best obtained by solving a sequence of linear problems

associated with an Incremental application of the loading. The formu-

lation of the governing matrix equation is developed by using the incre-

mental stress-strain matrix in conjunction with the stationary principle

for elastic-plastic solids. Following the procedure outlined in refer-

ence 3, we have developed a finite element computer program for solving

two dimensional elastic-plastic problems of rotational symmetry. The

element type is either triangular (ref. 4) or quadrilateral (ref. 5) and

both were implemented in analyzing gun tube problems. For the present

problem, the plane stress case was implemented. The field displacement

is based on the linear displacement function in a triangular element.

Small strain condition is used to derive the kinematical matrix (B].

The material behavior is characterized by the Mises yield criterion,

Prandtl-Reuss flow equations and isotropic hardening rule. A piece-

wise linear representation for the effective stress-strain curve is

used. As derived in reference 3, the incremental form of the constitutive

matrix [D] for an elastic-plastic element (a > ao) can be written as

{Aal - [D] {Ael

{Aay) T- ILAaY, t1OyV ATxyJ

{AC T LuC A

and

ay' +2A1 SYM.

D- D] -a'a'+2VA ' C' 2+2A-
A3  x yX

a '+v ' a '+Vax A2  2H'(l-v)a- Txy , Txy , +,

1+V 1+V 2(1+4) 9E
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where E, v are Young's modulus, Poisson's ratio, respectively.

2I - T 2 2 a +
A, - L8- F12 + Tx A 2 - Ox" + 2Vax'ay' +ay' 2 .

A 3 - 2(1-v 2)A. + A 2 , x - (20x.-ay)/3,

y (2ay- x ) 3 , ' - A5/AEP ,

a C [x2 + a.2 - Oxay + 3TxY2]1/2 
1

,&p - 2/3 [(APx)2 + (AP)I + (AcP) 2 + (AyPx)2]I/2 (2)

and ao is the yield stress in simple tension or compression. For an
elastic element in which a < CO, the constitutive matrix is

ED] v 1 0 (3)1-V2

0o (1-v)/2-

The stiffness matrix [k] for a triangular element is represented by

[k] - (B]T [D][B]tA (4)

where t denotes the thickness and A is the area of the triangular. Four

triangular elements are used to construct a quadrilateral element as shown
in reference 5. The element stiffness matrix is determined by static

condensation and the kinematical matrix is formed by averaging over four
triangulars. The stresses and strains are calculated at the centroid of
each element.

The computer program developed for the plane-stress elastic-plastic
problems was a modification of the previous program for the axisymmetric
case (ref. 4 and 5). The overlay feature was utilized for reducing the

core storage requirement. Disk was used as an auxiliary storage device
for the current element information and for solving the large system of

equation by partition. A tape may be used to store the final results
for output plotting and also for restarting this program from a point of

completion of a given loading sequence. The computer used is IBM 360
Model 44.
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3. MODEL AND LOADING. A two-dimensional photoplastic model of
aluminum block and polycarbonate ring was designed (ref. 1). The breech
ring was made of 0.12 inch thick LEXAN plate and the top of the ring was
fixed. This material has a Poisson's ratio of 0.38 in the elastic state
and a limiting value of 0.5 in the plastic state. The stress-strain (a-c)
curve for LEXAN beyond the proportional limit can be described by the
modified Ramberg-Osgood equation in the following form

Ec/aB - c/aB + (3/7)(a/cs)' for aAj a < ac  (5)

and the values of five parameters are E - 325 Ksi, n - 11.5, aA - 6.2 Ksi,
aB a 8.7 Ksi, GC - 9.576 Kai, where E is Young's modulus, n is a parameter,
ak is the proportional limit, aB is the secant yield strength having a
slope equal to 0.7 E and aC is the flow stress at which the slope of the
stress-strain curve is zero. A piecewise linear representation for the
effective stress-strain curve is used in this numerical study and the
values for 11 data points other than the origin are

(ci, aj in Ksi) - (.018621, 6.), (.020401, 6.5),

(.022480, 7.0), (.025158, 7.5), (.028988, 8.0),

(.034934, 8.5), (.044635, 9.0), (.051679, 9.25),

(.060781, 9.50), (.064043, 9.596), (.1, 9.576) . (6)

The dimensionless slope wi is defined by

Wi =-(i+l-ai)/(i+ 1 -ci) (7)

and we can calculate (H'/E)i - wi/(l-wi) for i - i,...,i0.

A finite-element representation for one half ol the breech ring is
shown in Figure 1. The other half is not needed because of symmetry.
There are 224 grid points and 189 quadrilateral elements in this model.
The grids 1 to 8 are constrained in x-direction only while grids 217 to
224 are held fixed.. The top portion of the breech ring is omitted because
this is believed to have little effect on the maximum stress information
near the lower fillet. In fact this belief has been confirmed by obtain-
ing the elastic solution for another finite element model with additional
70 quadrilateral elements in the top portion. The difference betweenthese two models for the maximum tensile stress is only 1.3%. The alumi-
num block is regarded as rigid and the load is transmitted to the ring
through contact. Initially the block is in full contact with the ring.
As load increases, a gap develops in the central portion. The width of
central gap under the full test load (2F - 1144 pounds) was observed
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experimentally to be about 5 inches. Our elastic-plastic finite-element
program in its present form cannot be used to determine the width of con-
tact and the force distribution as functions of loading. Guided by the
experimental information on the width of central gap, we have chosen four
contact conditions in this numerical investigation. The points of contact
are at nodes (33, 41, 49, 57) for case 1, at nodes (41, 49, 57) for case 2,
at nodes (49, 57, 65) for case 3 and at nodes (57, 65) for case 4. The
width of contact and the force distribution in each case are assumed to
remain unchanged during loading and only the total force (2F) is allowed
to increase. The force distribution may be uniform or non-uniform and both
types have been used in this study. Initially we apply a small force to
obtain elastic solution and the total force (2F*) required to cause incip-
ient plastic deformation is calculated by using Misas yield criterion.
Then we apply the additional force in increments until the maximum test
load is reached. The load increments we chose are non-uniform because

our experience indicates that smaller increments should be used as plastic
deformation becomes bigger. Our choice for the present investigation is
an arithmetic decreasing sequence generated automatically in the program.
If 10 incremental steps are used, then

LFjJ-i- L 918..ll'l°1(5.72-F*) for J -,...,0 (8)

It is important to choose a proper set of increments in order to obtain
good results at reasonable cost. To reach the maximum test load of 2F -
1144 pounds, we used 11 increments for the four contact conditions and 22
increments for the second and third cases. The difference between 11 and
22 incremental loadings for the maximum tensile stress is found to be
within 1%. The restart feature of the program has been used for the second
contact condition to increase the total force from 1144 pounds to 1300
pounds in 7 additional steps. The increments are again non-uniform.

4. RESULTS AND DISCUSSIONS. The numerical results of the stresses
in all elements were obtained for the overloaded breech ring under differ-

*l ent contact conditions. Some of them are presented below in Figures 2-7.
The major principal stresses in elements along the contact region and
fillet are shown in Figures 2-5, for the four contact conditions under
uniform load distributions. In each of these figures, we presented two
sets of data corresponding to the load levels at the initial yielding
(F*) and at the maximum test load (F - 572 pounds). The incipient plas-
tic deformation first occurs in element 99 for the first two cases and in
element 50 for the last two cases. The values of load level for the four
cases are F* - 312.8, 321.9, 221.7, 169.2 pounds. The initial yielding
is tensile in element 99 and compressive in element 50. It is interesting
to find out that the location of the maximum tensile stress is in ele-
ment 99 for all contact conditions under either uniform or non-uniform load
distributions and this location remains unchanged as the total force
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increases. Since this location is of sufficient distance away from the
contact regions, it seems to suggest that Saint Vennant's principle can
be applied to this problem in the elastic as well as plastic range of
loading. The values of the maximum tensile stress based on the four con-
tact conditions with uniform load distribution are 2029, 1972, 1939, 1936
psi at F - 100 pounds and 9532, 9361, 9174, 9119 psi at F - 572 pounds.
It should be noted that the stresses in the finite element program were
calculated at the centroid of each element but only one principal stress
at the boundary was measured. The values of the maximum tensile stress
at the fillet based on experimental approach are 2222 psi at F - 100
pounds and 9300 psi at F - 572 pounds. For the purpose of comparison,
the boundary stress is determined by extrapolation using the calculated
results for those elements along the radial direction through element 99.
This is illustrated in Figure 6 for the second case of contact condition.
Similar figures for the other three cases are not shown. Three curves are
plotted in Figure 6 and they represent the major principal stresses for
three load levels at the initial yielding, maximum test load and complete
unloading after reaching the maximum load. The residual stresses after
complete unloading are determined by assuming that the unloading process
is purely elastic. Our numerical results reveal no reverse yielding.
In extrapolating the boundary stress, we shall remember that the maximum
tensile stress shall not exceed the flow stress of 9576 psi. As seen in
Figure 6, a comparison between the numerical and the experimental results
for the maximum tensile stress indicates that a satisfactory agreement has
been reached. In Figure 7, two principal stresses as well as the residual
stresses in element 99 are shown as functions of loading. Only the second
case of contact conditions is presented here for illustration. The resid-
ual stress is determined by assuming a purely elastic unloading resulting
from various stages of loading. The minor principal stress (a2) is found
to be a nearly linear function of loading and its residual value is very
small. The value of the principal stress angle for all contact conditions
and for all load levels is found to lie within -26* to -27* with respect
to the x-axis. As can be seen in Figure 7, the major principal stress
(a1) and its residual value increase in magnitude as the total contact
force increases but they are of opposite sign. Therefore, the production
of compressive residual stress in an overloaded breech ring is beneficial
because it can counteract the high operating tensile stress induced by
firing. As a result of prestressing during the process of manufacturing,
the elastic carrying capacity and fatigue life can be increased and thus
the chances of breech failures can be reduced. Furthermore, the finite
element program developed here is a useful tool in redesigning breech
rings or blocks.
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AN ADAPTIVE ALGORITHM FOR EXACT SOLUTION
OF AN OVER-STRAINED TUBE

P. C. T. Chen
U.S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL
Watervliet, NY 12189

ABSTRACT. An adaptive algorithm to generate exact solution has been
developed for the plane-strain problem of a thick-walled tube overstrained
by internal or external pressure. The material obeys the von Mises' yield
criterion, the Prandtl-Reuss flow theory and the isotropic hardening rule.
The ideally-plastic material is treated as a special case. The formulation
is based on the finite-difference method in conjunction with a scaled
incremental-loading approach. One additional grid point will become
yielded in each load step. The grid sizes and load increments are deter-
mined in the program. For a given percentage of overstrain and a desired
solution accuracy, the stresses and strains can be obtained in an effi-
cient way.

1. INTRODUCTION. In a previous paper (ref. 1), a new finite-differ-
ence approach was developed for solving the axisymmetric plane-strain
problems subjected to internal or external pressure beyond the elastic
limit. The material was assumed to obey the von Mises' yield criterion,
the Prandtl-Reuss flow theory and the isotropic hardening rule. The
ideally-plastic material was treated as a special case. The new formula-
tion is simpler than other finite-difference methods for ideally-plastic
materials (ref. 2) and strain-hardening materials (ref. 3). The load
increments used in all steps were fixed and equal. Accurate numerical
results can be obtained by reducing the grid sizes and load increments.

In the present paper, an adaptive algorithm to generate more accurate
solution will be developed for the plane-strain problem of an overstrained
tube. The load increments in all steps are varied and determined auto-
matically in the program. One additional grid point will become yielded
in each load step. To reach 100% overstrain, the number of steps are
equal to the number of grids. For a given percentage of overstrain and
a desired solution accuracy, the stresses and strains can be obtained in
a much more efficient manner.

2. BASIC EQUATIONS. Assuming small strain and no body forces in the
axisymetric state of plane strain, the radial and tangential stresses,
or and a8 , must satisfy the equilibrium equation,

r(aar/ar) = a8 - ar ; ()
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and the corresponding strains, Cr and e8, are given in terms of the radial

displacement, u, by

cr a 3u/3r , ce - u/r. (2)

It follows that the strains must satisfy the equation of compatibility

r(3C8/ar) - Cr - e (3)

The material is assumed to be elastic-plastic, obeying Mises' yield
criterion, Prandtl-Reuss flow theory and isotropic hardening law. The
complete stress-strain relations can be rewritten in an incremental form

(ref. 4)

doi - dijdcj  for i,j - r,e,z (4)

and

dij/2G - v/(1-2V) + 8 j - a j /S (5)

where E is Young's modulus, v is Poisson's ratio, 8ij is the Kronecker
deltap

S (1 + H I Ht/G)a , 2G - E/(l+v) , (6)
3 3

an (ar+.+2)/3 , It - , (7)

a - (/V )[( -)- + (a-a )1 + (a -a )2] 1 /2 > C , (8)
rO z z r 0

and a. is the yield stress in simple tension or compression. For a strain
jhardening material, H' is the slope of the effective stress/plastic strain

curve - (d P)  .

For an ideally-plastic material, HI - 0. When a < ao or do < 0, the state
of stress is elastic and the third term in equation (4) disappears. Con-

sider a thick-walled cylinder of inner radius a and external radius b.
The tube is subjected to inner pressure p and/or external pressure q.
The elastic solution for this problem is well-known

ar ,.:t (q-p) b 2 +p-q (b/a)l 9
00  ~ a-I(M) + 2/&2_1 (9)

Cy =- V(0*r ) ,
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and the pressure p* or q* required to cause initial yielding can be deter-
mined by using the Mises' yield criterion.

3. FINITE-DIFFERENCE FORMULATION, For pressure beyond the elastic
limit, an incremental approach of the finite-difference formulation is
used. At the beginning of each incremental loading, Ap or Aqv the dis-
tribution of displacements, strains and stresses are assumed to be known
and we want to determine Au, Aert he Aa _, A(e, AcY at all grid points.
The cross section of the tube is divided Into n rings with

rlma,r 2,...,rk-P,...,rn+l-b, (10)

where p is the radius of the elastic-plastic interface.

Since the incremental stresses are related to the incremental strains
by the incremental form (Eq. (4)) and Au - rAce, there exists only two
unknowns at each station that have to be determined for each increment of
loading. The unknown variables in the present formulation are (Ace)i,
(ACt)i, for i - 1,2,...n,n+l.

The equation of equilibrium (Eq. (1)) and the equation of compati-
bility (Eq. (3)) are valid for both the elastic and the plastic regions of
a thick-walled tube. The finite-difference forms of these two equations
at i - 1,...,n are given by

(ri+i-2ri)(Ar)i - (ri+1-ri)(Aae)i + ri(Aar)i+1

- (ri.l-ri)(6 ar)i - rit((r)i+I - (Or)il (11)

for the equation of equilibrium, and

(r -2r )A) (ri+ -r)(Ac ) + ri(AC)i+ i ilr i 1 0i+l

= (ri+l-ri)(r-e8 )i - ri[(ce)i+l - (C8)i] (12)

for the equation of compatibility.

With the aid of the incremental stress-strain relations (Eq. (4)), Eq. (11)
can be rewritten as

[(ri+1-2ri) (d1 2)i + (-ri+l+ri)(d 2 2 )i](Ace)i

+ [(ri+i- 2ri) (dll) i + (-ri+l+ri) (d21 )i] (Act) i

+ ri(d12)i+l(i ei+l + ri(dll)i+l(he ri+ 1

- (ri+l-ri)(%--a r iri[(ar)i+ (a) 1 ] (13)

*3419



The boundary conditions for the problem are

AO r(a,t) - -Ap , Aa r(b,t) - -Aq . (14)

Using the incremental relations (Eq. (4)), we rewrite Eq. (11) as

(dl2)i(Ace) l + (dll)l(AEr)l - -Ap ( (15)

and

(di2)n+l(Ae )n+i + (dll)n+l (ACr) n+1 -tAq . (16)

Now we can form a system of 2(n+l) equations for solving 2(n+l) unknowns,
(Ace)i, (dri for i M l,2,...,n,n+l. Equations (15) and (16) are taken
as the first and last equations, respectively, and the other 2n equations
are set up at i - 1,2,...,n using Eqs. (12) and (13). The final system is
an unsymmetric band matrix with the nonzero terms clustered about the main
diagonal, two below and one above.

4. INCREMENTAL LOADING - FIXED VS. SCALED. When the total applied
pressure p or q is given, it is natural to divide the loading path into m
equal fixed increments with

Ap - (p-p*)/m , Aq - (q-q*)/m . (17)

These fixed increments need not be equal for all steps and any sequence of
m Increments can be supplied by the user. The fixed increments were applied
until the total pressure or a given percentage of overstrain is reached.
The percentage of overstrain is defined as (p-a)/(b-a) x 100%. The accu-
racy of the numerical results will depend upon the values of m and n used.
Large values of m and n will yield better results at greater cost. For
each value of n - 20, 50, 100,..., we may set m = n, 2n, 4n, 8n,..., to
discuss the convergence. The numerical results suggest that a sequence of
decreasing load-increments is a better choice than that of equal increments.

In the following, a method to generate a sequence of load-increments
is described. The method is based on a scaled incremental loading approach
(ref. 4). In each step, a dummy load-increment such as Ap is applied and
the incremental results Aai for i - r,O,z at all grids are determined. For
all grid points at which a . aill < a, we compute the scaler a's by the
formula

1 {r + Er2 + 411Aaill2% II iI2)]l/ 2/la 1 ill , (18)
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where

r - a1112 + IIAailll- II + Aa1 1I2  , (19)

and Ilaill. IIAaill, Hai1 + AailI2 are computed by

110 11' (a -ae)2 + (a-0 )2 + (yz-ar) 2] (20)

Let X be the minimum of the a's. Then X is the load-increment factor just
sufficient to yield one additional point. A sequence of X J ) can be deter-
mined for all steps J - l,2,...,m and the updated results are

p(J) . p (J-1) + X(J)&p(j)

aiJ) = ai (J-1) + X(j)'&a , etc. (21)

5. NUMERICAL RESULTS AND DISCUSSIONS. The numerical results for a
thick tube with b/a - 2, v - .3 subjected to internal pressure only were
obtained. The elastic-perfectly-plastic case (H' - 0) as well as strain-
hardening case (H' - E/9) were considered. Both fixed and scaled incre-
mental loading approaches were used. The pressure p* required to cause
initial yielding is .4323 ao.

In order to compare the rate of convergence based on two incremental
loading procedures, we consider an elastic-perfectly-plastic case. The
numerical results were shown in Tables 1 and 2. Based on the equal load-
increments, the effect of a and n on the internal pressure and bore dis-
placement can be seen in Table 1. Larger values of a and n will yield
better results except the bore displacement for 100% overstrain. If the
scaled incremental loading approach is used, the load-increments for all
steps are calculated and m - n x 100% overstrain. The numerical results
for the pressure, displacement, axial stress at the inside and the max-
imum hoop stress were shown in Table 2. A comparison of Tables 1 and 2
inlicates that the scaled incremental loading approach is much more accu-
rate and efficient than the equal incremental loading approach. For
example, to reach 50% overstrain with n - 20, 10 scaled load-increments
can give better results than 2044 equal load-increments.

Finally, we consider a strain-hardening tube subjected to internal
pressure only. The numerical results were based on the scaled incre-
mental loading and the following parameters: b/a - 2, v - .3, H' - E/9,
n - 100. The stresses and strains as functions of overstrain percentage
were obtained. In Figures 1 and 2, we show the residual stresses result-

ing from 50% and 100% overstrain. The effect of favorable residual
stresses of an autofrettaged tube is well known. A simple and efficient
approach to compute accurate residual stresses is important.
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TABLE 1. CONVERGENCE STUDY BASED ON FIXED LOAD-INCREMENTS
IN A PLANE-STRAIN TUBE (b/a - 2, v - .3, H' = 0),
Ap = (p-p*)/m.

50% O.S. 100% O.S.

EP/00 Ua EPla Ua
a yo a 0a o

20 14 .7597 2.1779 18 .8532 4.1528
30 .7480 2.1382 38 .8322 4.0422
62 .7422 2.1169 78 .8222 4.2663

126 .7393 2.0991 159 .8198 5.2851
252 .7374 2.0924 317 .8161 4.6004
508 .7369 2.0897 637 .8143 4.1516

1020 .7367 2.0904 1277 .8134 4.1538
2044 .7366 2.0898 2556 .8128 4.0463

50 39 .7347 2.0497 50 .8200 3.9683
77 .7308 2.0387 98 .8123 3.8637

156 .7269 2.0142 199 .8081 3.8473
391 .7261 2.0168 497 .8058 4.1184
793 .7257 2.0152 1006 .8046 3.9444

100 77 .7249 1.9963 99 .8085 3.7437
154 .7231 1.9913 198 .8062 4.2167
236 .7235 1.9982 301 .8037 3.7931
391 .7227 1.9952 498 .8022 3.7641

200 152 .7211 1.9781 196 .8047 4.3750
311 .7211 1.9831 398 .8018 3.9207
720 .7203 1.9802 920 .8003 3.8174
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TABLE 2. CONVERGENCE STUDY BASED ON SCALED LOAD-INCREMENTS IN
A PLANE-STRAIN TUBE (b/a - 2, V - .3, H' - 0).

E Ua Max. az10 0P E Ia. at r-a

20 .7276 2.0710 .8879 -.1106
50 .7225 2.0078 .8919 -.1071

50% 100 .7205 1.9877 .8932 -.1056
200 .7193 1.9776 .8939 -.1047
400 .7189 1.9731 .8942 -.1045

20 .8079 3.9786 1.1251 -.2199
50 .8027 3.7835 1.1251 -.2127

100% 100 .8004 3.7224 1.1251 -.2098
200 .7990 3.6920 1.1251 -.2081
400 .7982 3.6770 1.1251 -.2072

REFERENCES

1. Chen, P. C. T., "A Finite-Difference Approach to Axisymmetric Plane-
Strain Problems Beyond the Elastic Limit," Transactions Twenty-Fifth
Conference of Army Mathematicians, pp. 455-466, January 1980.

2. Hodge, P. G. and White, G. N., "A Quantitative Comparison of Flow
and Deformation Theories of Plasticity," J. Appl. Mech., Vol. 17,
1950, pp. 180-184.

3. Chu, S. C., "A More Rational Approach to the Problem of an Elasto-
Plastic Thick-Walled Cylinder," J. of the Franklin Institute, Vol.
294, 1972, pp. 57-65.

* 4. Yamada, Y., Yoshimura, N., and Sakurni, T., "Plastic Stress-Strain
Matrix and Its Application for the Solution of Elastic-Plastic Prob-
lems by the Finite Element Method," Int. J. Mech. Sci., Vol. 10,
1968, pp. 343-354.

353

i .... . A .



1-6 2.0

//

j /100% 0'S.

Figure le The residual tangentil1 stress distribution in an
overtranedtub (ba 20, 0., w 0.1. n -100).

354



- -o50 %O.S.

'1001

1.0 1.2 1.4 1. 6 1.8 2.0
r/a

Figure 2. The residual radial and axial stress distribution in

an overstrained tube (b/a -2.0, v -0.3, w -0.1, n -100).

355
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ABSTRACT. This paper discusses algorithms for solving the
transonic full-potential equation in conservative form on a vector
computer, such as the CDC CYBER-200 series or the CRAY-i. Recent
research with the "artificial density" method for transonics has
led to development of some new iteration schemes which take advan-
tage of vector-computer architecture without suffering significant
loss of convergence rate. Several schemes were tested and results
are shown comparing the computational rates of one of the promising
schemes on several different computers.

1. INTRODUCTION. In the last decade, significant progress
has been made in the analysis of three-dimensional aerodynamic
configurations at transonic speeds. The key element in this
progress has been the development of reliable relaxation methods
for solution of the nonlinear potential equation in various forms.
In many cases, useful results have been obtained with these methods
on standard, "serial-type" computers such as the CDC 6000-series
and the IBM 360-series machines. However, production-type runs of
3-D transonic codes use excessive amounts of computer resources.
An example is the Caughey-Jameson (ref. 1) transonic wing code
FLO 22 used extensively throughout the Government and aircraft
industry: A medium parabolic-coordinates grid of 192 x 16 x 32
(chord x normal x span) takes about 1,700 seconds on a CYBER-175
computer, with an accounting cost of about $500. It is estimated
that the inclusion of a sophisticated 3-D boundary-layer inter-
action scheme might triple the cost.

Furthermore, the finest grid which can be operated in the
CYBER-175 with the FLO 22 code is 192 x 24 x 32, which has been
found to provide inadequate resolution of certain features of
the flow such as swept, oblique, weak shock waves where the flow
before and after the shock is supersonic. A more desirable grid
for resolving such features seems to be about 300 x 32 x 32, well
beyond the capacity of most existing high-speed serial computers.
There is thus an increasing interest in operating these codes onmore powerful computers in terms of both memory and speed, such

as the CRAY-1, CDC STAR-100, CYBER-203, or ILLIAC-IV.

The current relaxation methods used in the 3-D transonic codes
are not suitable for the vector-architecture computers just men-
tioned. For example, one of the most reliable and widely-used
methods is line successive overrelaxation (LSOR); its convergence
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rate depends partly on using the latest available values from
the previous line while solving for the current line; hence,
the lines cannot be solved simultaneously. Use of old values
of the preceding line would reduce the method to line Jacobi
and (assuming stability) allow simultaneous solution of all
lines; however, the convergence rate would be intolerably slow,
negating the advantages of the fast computational rate of the
vector or parallel computer. It is clearly desirable to search
for methods that can take advantage of the long-vector opera-
tional capabilities of such machines as STAR without suffering
significant loss in convergence rate compared to established
serial-computation methods.

Some progress has been made in this direction already. Smith
et al. (ref. 2) carried out a preliminary study of "vectorizing"
the LSOR algorithm in FLO 22. The serial version of the code
has the option to use either vertical or horizontal line relaxa-
tion; the vector version used the horizontal line algorithm to
achieve the longer vector length (192 to 300). Speed gains of
the STAR-100 over the CYBER-175 ranged from 2 to 3, indicating
that far greater vector lengths and less serial, or scalar,
operations were required for the STAR-100 to approach its
potential efficiency. Keller and Jameson (ref. 3) studied a
three-iteration level, explicit, point relaxation scheme for
the 2-D small-disturbance equation, with vector lengths equal
to the number of points in a plane. Their results indicated
that such a code, with vector operations of length I x J of
order 103 or more approached the full potential of the STAR-100
capability; however, the explicit scheme took about three times
as many cycles on a given mesh as LSOR, so some of the benefits
were lost. Their net gain over a good serial LSOR version on
CYBER-175 was 1.8, although the vector-code computational rate

*was 250,000 points/second. Redhed et al. (ref. 4) discussed an
alternating-line SOR method for a 3-D transonic wing code, where-
in the odd and even vertical lines in a cross-flow (Y-Z) plane
were solved separately; the computation of the equations (resid-
ual and tridiagonal coefficients) was a vector length equal to
half the cross-plane dimension J x K/2 - 28 x 20/2 = 280, while

* the even- and odd-line tridiagonal solutions were carried out
with J/2 = 14 length vectors. This procedure represented a
compromise in that it retained the essentials of the relatively
successful LSOR algorithm, while achieving an increase in vector
length for a significant part of the calculation. The net result
for this algorithm on STAR-100 was a speed gain of 3.4 over the
CYBER-175 LSOR code. Obviously, a larger speed ratio would have
been obtained using a finer mesh; the 64 x 28 x 20 mesh employed
in reference 4 should be considered as a coarse 3-D mesh. Ref-
erence 4 rightly concluded that more study is needed to eliminate
the short-vector operations. Hotovy and Dickson (ref. 5) pre-
sented a "3-color checkerboard" algorithm for use on STAR-100
for a 2-D transonic small-disturbance equation. The third "color"
in the checkerboard pattern of solution was required in their
algorithm because of the update of the (i-2,j) point in the up-
wind difference for xx at supersonic points. Their algorithm
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required that point to be at the same iteration level as the
(ij) point; and, hence, they could not both belong to the same
vector or "color." The vector lengths in the algorithm were
1/3 of the mesh points in the I x J plane. The algorithm
suffered from the same defect as did the explicit scheme of
reference 3, in that it required about 3 times as many cycles
as a good LSOR version; the net speed ratio was about 2 when
the 3-color checkerboard on STAR was matched against LSOR on
CYBER-175.

In this paper, we present a new algorithm which solves the
2-D and 3-D full-potential equation in conservation form. The
scheme is based on the artificial density formulation of the

potential equation studied in references 6 to 8. With this
formulation, transonic full-potential calculations are rather
easily vectorized. In the following section, the artificial
density method is discussed briefly. Improved procedures are
given which avoid erratic behavior at shocks. Subsequent sec-
tions discuss some properties of vector-processor machines,
iteration algorithms, and numerical results.

2. THE ARTIFICIAL DENSITY METHOD. The artificial density
method has been proposed in references 6 to 8 as a simple method
for introducing dissipation into the difference analog of the
conservative full-potential equation. The idea is to solve the
equation

(p*x) + (PO* ) + (P*z) = 0xy z

where

P = p - uAsps

1

p M (M2 a2)y' -1
4CO

a2 =.i L 1 q 2 )

a 2 + y q
; 2

q 2 2 2 + 2
= y z

max (0, 1 - a2 /q2)

359



The term Asps in the p-equation is the product of the step

length along a streamline and the streamwise density gradient.
The use of in the potential equation instead of the isen-
tropic density p produces a dissipative difference scheme
when correct differencing is used. In references 7 and 8, the
isentropic density was calculated at the node points using the
velocity components centered there. The difference operator
requires the density values at midpoints of line segments con-
necting node points; hence, these midsegment values were obtained
by averages of the adjacent node-point values. In reference 7,
this convenience wascarried through to the calculation of the
artificial density p,

Pij pij - 4ij (psAs) ij

where upwind formulas were used for the approximation to psAs.

The midsegment values of p were calculated as averages. A
similar procedure was used in reference 8. In both references 7
and 8, it was noted that overshoots (nonphysical expansions)
occurred just ahead of a shock wave and that it was usually
necessary to multiply the switch function u by a constant or
variable factor to increase the amount of dissipation. This
procedure tends to cause more smearing of the shocks, and a
reliable prescription for selecting the factor from one case
to the next is not known. South and Jameson (ref. 9) relate
this erratic behavior to two sources: (1) The mislocation of
the switch function, P, and (2) calculation of the midsegment
densities by averaging nodal-point values. In reference 9, the
difficulty is cured if the switch function pi, defined at the

node point i rather than at the midsegment i+J, is used in
the expression for Pi+, and if the midsegment values of the
density are calculated using the midsegment values of the veloc-

ities as in references 6, 10, or 11. Two-dimensional results
illustrating these points are given in figures 1 to 3. Fig-
ures 1 and 2 compare the nodal point and midcell evaluation of
artificial density for a nonlifting NACA 0012 airfoil and
MW = 0.85 and 0.92, respectively. These results, and all
others in this paper, use the planar, small-disturbance boundary
condition at the airfoil mean chord line. The M, = 0.92 case
exhibits a "fishtail" shock pattern, with an oblique shock at
the trailing edge followed by a normal shock in the wake. The
nodal-point density evaluation gives nonphysical overshoots
(which could be diminished at the expense of more smearing),
while the midcell density yields sharp shocks with no discern-
ible overshoots. Figure 3 shows the midcell method alone for
MW - 1.2, with a bow shock ahead and an oblique shock at the
tail. Again the results show a sharp shock without overshoots.

It has been found that the question of iterative schemes
for solving the artificial-density difference equations is an
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issue almost separate from the artificial density formulation.
Indeed, fairly simple iteration schemes could be applied to the
difference equations irrespective of how the artificial viscos-
ity is introduced. Based on these simplified iteration schemes,
new methods for transonics are especially effective on a vector
or parallel computer as discussed in a later section. First,
calculations on vector computers are discussed in the following
section.

3. VECTOR PROCESSOR PROPERTIES. The advent of the new
vector processor type of large-scale computers (CDC STAR-100,
CDC CYBER-203, CRAY-1, ILLIAC IV, and Texas Instrument ASC)
will have a significant impact on iterative algorithms used
for transonic flow calculations. There are currently two types
of vector processors. The first type gets its speed by having
a number of parallel processors which can perform the same
operation on different sets of operands simultaneously. An
example of this type is the ILLIAC IV. The second type is
the pA.peline processor which does operations on streams of
operands in assembly-line fashion. CDC STAR-100, CYBER-203,
and CRAY-1 are examples of this second type. Vector computers
are most efficient when the algorithms used call for the same
operations to be done on a number of different pairs of oper-
ands (or vectors) independently. The parallel processors
operate at their fastest rate when the vector length is equal
to the number of processors. The CDC pipeline-type processors
continue to operate more efficiently as the vector length in-
creases. Another feature of such machines is that as the ratio
of vector speed to scalar speed increases, it becomes even more
important to avoid scalar operations. For example, if vector
operations can be done 20 times faster than scalar operations
and a code does 90 percent of its operations in vector mode and
10 percent in scalar mode, then the 10 percent of the operations
which are scalar will take 69 percent of the time. The main
improvement of the CYBER-203 over the STAR-100 is that the
CYBER-203 has a much faster scalar speed than the STAR-100.

As discussed in the Introduction, the methods in wide use
for transonics today are not very suitable for vector computers;
they involve short-vector operations and over 10-percent scalar

- work. The following section discusses transonic algorithms which
use moderate-to-long vectors and which appear to minimize the
scalar work.

4. ITERATION ALGORITHMS. So far the search for efficient
iterative schemes for vector processors has developed into a
study of compromises. We have examined several explicit, im-
plicit, and semi-implicit schemes including second-order
Richardson iteration, checkerboard SOR, checkerboard leapfrog,alternating line SOR, and approximate factorization. Details
of these schemes can be found in reference 12. The scheme which
has proven to be most efficient on the CDC vector processors is
a point scheme which mimics a full-plane SOR. We call this
scheme ZEBRA II. It is a cross-plane checkerboard, where the

*horizontal lines j + k odd are black and the lines j + k even
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are white. Each plane i - constant is thus a checkerboard
pattern. The algorithm is, in its simplest form for an un-

stretched grid,

=AX2Ri~
BAijk = + OA$1 -l,jk

Pavg

where

X2Rik (n nk

AxR ijk - Pi+i,jk (i+l,Jk - Oijk)

- Pi,jk(Ojk -i-l,jk)

+ JJ+,k (Oi,j~l,k - Oijk)

- n O. 1( x
- i,J-J,k OiJk i i- k A

- Pij,k.i ( ij,k+ -
jk

- ij,k-( *ijk- ij,k-) (Az!)

v n for j + k odd

v - n+l for J + k even

2X W2(AAx\ 2  z 2(Ax\
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The term B is the coefficient of the added *xt; the algorithm

possesses "natural" * xt in that the *-values at the i+l

plane are old, while the values at i-1 are new. We use a
simple scheme for automatically increasing or decreasing 6 as
needed. Generally, an estimate for the spectral radius based
on both the maximum residual and the average residual is calcu-
lated. Let

SRM - IR n  /IR In - 1

max/ max

SRA - IRI / n-I

avg / avg

Then R is changed according to:

if (SRM + SRA) > SRMAX) = n+l

and an < BMAX 2

if (SRM + SRA) < 2.0 8 an+l = 0 .9 8 $n

Typically, the parameters which have been quite successful for
stretched Cartesian meshes are:

1.9 1 < 2.0, wy = 2.0

SRMAX = 2.1

BMAX = 2.0

a 80 = 0.25

The usual behavior of the convergence process is a transient
adjustment of the supersonic region and shock movement, followed
by a fairly smooth decrease of the error with an attendant re-
duction in 8. The three cases of figures 1 to 3 were solved
easily by the 2-D version of ZEBRA II; the latter two should be
considered as rather severe tests of an iterative scheme. So
far, the ZEBRA II algorithm has been the most reliable method
tested of those considered herein.

ZEBRA II has two features which are advantageous for vector
processors. First, the algorithm uses vector instructions most
of which are of length 0(J x K) or longer; typical vector lengths
range from 400 to 1,000. Second, the storage occurs in a natural
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order, so that a virtual memory system will have no excessive
paging. The *-array is the only 3-D array stored as consecu-
tive cross-planes; all other arrays are 2-D. For example,
STAR-100 is a virtual memory machine, and the code and all
2-D arrays were stored on one large page. The other large
pages available in core were left for the 0-array. On the
STAR-100 computer at Langley Research Center, which has about
1/2-million-word (64-bit) storage, it would be possible to run
cases with as many as 10,000 points in a cross-plane and still
have a small number of page faults per iteration (depending on
how many points are in the x-direction). When all of the
values of the potential function will not fit in core, it is
possible to have the number of page faults per iteration equal
to 2 plus the number of large pages (65,000 words) which will
not fit in core.

5. NUMERICAL RESULTS. A pilot code was written to test
different algorithms for 3-D transonic flow around a wing at an
angle of attack. The calculations reported here are for a = 20,
Mw - 0.85, NACA 0012 airfoil section, leading-edge sweep angle =
trailing-edge sweep angle = 150, on a grid I x J x K = 70 x16 x30.
All runs were 400 cycles. Figure 4 shows the convergence history
of the ZEBRA II scheme and line successive overrelaxation (LSOR).
The two converge at nearly the same rate.

The pilot code was first operated on several different
machines without any vectorization. The times are shown in the
table. Note that the STAR-100 is slow (about the speed of a
CDC 6600) in scalar mode, but that the CYBER-203 (an improved
version of the STAR-100) is much faster (almost as fast as a
7600); and, when the optimizing compiler is used on the CYBER-203,
it is much faster still (almost as fast as the CRAY-1).

The code was then modified to take advantage of the vector
processing capabilities of these computers. The modifications
for the CRAY-1 were minor. The only changes necessary were to
rearrange loops by introducing temporary vectors so that the
compiler could generate vector instructions. For the CRAY-I
results in this paper, only a portion of the code was vectorized.
The calculations of the density and the maximum residual were not
vectorized. It is estimated that a completely vectorized code on
the CRAY-i would run in about 80 seconds. The modifications on
the STAR-100 and CYBER-203 were not as easy to make. The code
was rewritten using explicit vector instructions.

The two types of vector processor computers used in this
study have different architectures. The CRAY-i reaches its full
speed with short vector lengths while the speed of the STAR-100
and CYBER-203 increases as the vector length increases. The
results shown in this paper were computed on a grid with (30 x 16)
480 points in each cross-plane. On this size problem, the
STAR-100 computational rate is 144,000 points/second. When the
number of points in the cross-plane is increased to (60 x 32)
1,920, the computational rate increases to 208,000 points/second.
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Thus, the STAR-100 and CYBER-203 have an additional advantage
as the problem size increases. Finally, it should be emphasized
that the 32-bit arithmetic capability of STAR-IO can be uti-
lized to push the larger problem computational rate to 460,000
points/second and double the available core size.

6. CONCLUDING REMARKS. The artificial density method for
computational transonics has opened the door to the development
of new algorithms which are more efficient on vector computers
such as STAR-100, CYBER-203, and CRAY-i than current "serial"
methods such as LSOR. The architecture of the new computers

suggests compromises which must be made in order to best utilize
the capabilities of these machines. A good vector algorithm for
the CDC vector processors is one in which the data is processed
in a natural contiguous pattern; the vectors are of moderately
long length (400 to 1,000, say); and the convergence rate is
not much slower than good standard methods. One method which
fits these requirements is ZEBRA II, which is essentially a

cross-plane, point-relaxation, checkerboard method.

The numerical results illustrate some of the compromises
that must be made. The ZEBRA II scheme works efficiently on
both CRAY-i and STAR-100, with run times of about I minute for
a 3-D lifting wing with planar boundary conditions, Cartesian
coordinates, and the full-potential equation. STAR-100 32-bit
arithmetic capability would yield run times of 26 seconds. This
run time represents a speed gain of 10 over CDC 7600 and 17 over
the CYBER-175. Doubling the number of mesh points in each cross-
plane direction increases the relative speed gain of STAR-100 by
30 percent.

It remains to be studied as to how well the ZEBRA II scheme,
or some variant of it, can be made to work in other coordinate
systems, such as the parabolic coordinates used in the Jameson-
Caughey FLO 22 wing code. Further, it would be valuable to
obtain some hard data on vectorization of some of the new implicit
approximate factorization methods.
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TIMING COMPARISON FOR ZEBRA II ALGORITHM
FOR TRANSONIC FLOW

MACHINE AND CODE VERSION C-U TIME (SEC)

STAR-100 s _alar code 2,272

CYBER-175 scalar code 724

CYBER-203 scalar code 487

CDC 7600 scalar code 443

CYBER-203 scalar code, optimizing compiler 243

CRAY-1 scalar code 222

CRAY-I partially vectorized code 144

STAR-100 vectorized code 80

CYBER-203 vectorized code 74

It is estimated that a fully vectorized code would run in about
80 seconds on the CRAY-I.

STAR-100 and CYBER-203 have 32-bit arithmetic capability also
via the SL/1 language. It is estimated that the CPU time for
such a case would be about 36 seconds on the STAR-100.
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ABSTRACT. This paper addresses a proposed systematic methodology

for use in analyzing biased and autocorrelated simulation data. The

objective for using the methodology is to determine the best manner in

which to operate a simulation model to permit computation of a minimum

mean-squared-error estimate for the stationary mean of a simulated

process. A mean-squared-error estimate provides Ln optimum trade-off

between estimator bias squared and variance. Areas of special attention

in this paper include computer aided analysis of nonstationary processes,

time series analysis and analysis of queueing model data.

* 1. INTRODUCTION. On occasion during the planning and execution of

computerized simulation experiments, an experimentor has to face the

situation in which a simulation model will generate a transient, auto-

correlated nonterminating series of random observations. Then, observ-

ing that the simulation experiment does not have some natural stopping

point, the experimentor must set a limit to the maximum number of

sim.-.ation observations created. However, if the simulation experiment

thould not exit its transient warm up phase within the constraining limit,

.,s oboervations from a transient distribution may have to be used for

o. ,.ir -'jrzoses. Unfortunately, if estimates for stationary process

S ,.- '.- ipon transient data, the estimates will generally
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be unreliable. Assuming that both transient and autocorrelated model be-

havior is unavoidable, the following question surfaces: which methodology

and what criterion or criteria should be used for estimating so that the

resulting estimates will be meaningful?

Given the preceding question and some general interest in the esti-

mation of an initially transient process' stationary mean, the specific

area under consideration in this paper is the development of a systematic

methodology to determine the best manner in which to conduct a simula-

tion experiment to obtain an estimate for the steady state process mean.

The purpose of the methodology is to provide an experimentor with a

quantitative procedure with which to select from one of four alternatives

available for the conduct of a simulation experiment. The four choices

are: conduct one long simulation run and retain all observations;

conduct one long run and discard warm up observations; replicate and re-

tain all observations or; replicate and discard warm up observations [I].

Three essential parameters which result from the use of the method-

ology are: N, an integer which specifies the number of independent sim-

ulation runs to be conducted in a simulation experiment; W, an integer

which specifies the number of warm up observations to discard in each

simulation run of an experiment; and L, an integer which specifies the

number of observations saved in each simulation run of an experiment and

used for estimation purposes. The integers W, W and L are subject to

the constraint N(W+L) < M, where M is a budget constraint which denotes

the total number of response observations that may be created in each

simulation experiment. Use of N, W and L for the conduct of a simula-

tion experiment should lead to operating conditions that permit the

computation of an approximately minimum mean-squared-error estimate for

the stationary mean.

The systematic methodology approach is presented in Section 2, and

to show how the methodology works, a simple autoregressive process ex-

ample is explored in Section 3. The example demonstrates the feasibility

of the methodology per se and suggests its applicability to more complex
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time series processes. Section 4 delves into the application of the

methodology to a simple queueing process.

2. METHODOLOGY APPROACH. The approach pursued in the development

of a methodology for analysis of transient autocorrelated data is based

upon the theoretical works of Wold 12] and their subsequent practical

extension by Box and Jenkins [3]. Furthermore, the methodology has also

been influenced by Fishman's use of the mean-squared-error criterion as

a figure of merit for use in nonstationary simulation experiments [4],

and Turnquist and Sussman's use of a budget constraint to limit simula-

tion experiments [5].

Wold's efforts during the nineteen-thirties have led to general

recognition of the following three time series models:

Xt = 1iXtl + 02 Xtp2 + ... + pXt-p + at (2.1)

Xt = at - ela tl - e2at_2 - ... - %a t-q  (2.2)

Xt M iXt-l + 2 X tp2 + ... + pXt-p + at -lat-l

e2at-2 - ... - qa (2.3)q t-q

Where equation (2.1) defines an autoregressive AR(p) process, equation

(2.2) defines a moving average MA(q) process, and equation (2.3) defines

an autoregressive moving average ARMA(p,q) process. The variable X

represents a current value, whereas the Xt, Xt 2,... variables rep-

resent lagged values of the variable Xt. The variables at, at_ ,, at 2 '

... represent random disturbances or shocks and are generally assumed

NID(, a ). The coefficients i' 2' . and 1 , e2, repre-

sent model parameters. Theoretically, p and q can be finite or infi-

nite depending upon the particular process represented.

Although theoretically satisfying, Wold's models were not overly

practical because of the lack of an efficient methodology for selecting

and fitting an appropriate model to a given time series. This trouble-

some problem was overcome by Box and Jenkins with their development of
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a methodology for rapid identification and fitting of an appropriate AR,

MA or A&MA model to time series data. Their methodology entails esti-

mation of the autocorrelation and partial autocorrelation functions to

provide visibility into the underlying mechanism of an unknown process.

Essentially, the Box and Jenkins approach employs inspection of esti-

mated autocorrelation and partial autocorrelation functions to detect

stationarity, trend, seasonality and randomness in time series data as

well as to tentatively identify an appropriate model. The estimated

autocorrelation coefficients are further used for the estimation of

model parameters.

Working with the assumption that it is possible to characterize

many transient, discrete event, stochastic processes by the use of sur-

rogate models such as one of Wold's family of models, the following

protocol has been investigated in an attempt to develop a computer aid-

ed methodology which will lead to a minimized mean-squared-error esti-

mator:

1. Specify a simulation experiment budget constraint M and

initial condition x0
2. Operate the simulation model to create h time series observa-

tions {xt ; t-l,2,..., h} such that 219 < h < M.
3. Separate the series at xd such that h - 50 - d.

4. Attempt to identify an AP14A(p,q) model for the series {xt
t-d+l, d+2, ..., hi by employing Box and Jenkins' techniques

(3] for model identification and tentative estimation of model

parameters.

5. Apply the Hooke-Jeeves pattern search technique [6] to optimize

the estimates for parameters such that the estimates will sat-

isfy the entire series {xt ; t-0,1,2,..., h}.

6. Perform a Chi-square test to test if the estimated shock terms

{at ; t-l,2,..., hi generated by the Hooke-Jeeves pattern

search are normally distributed about a zero mean.

7. Based upon steps 1 through 6, use the selected ARMA(p,q) model

to generate a surrogate time series {yt ; t-1,2,..., hi.

8. Perform a two tailed paired t test to test the hypothesis that

the stationary means for the two series {x land (yt came from
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the same population.

9. Based upon the results of the Chi-square and two tailed paired

t tests, if the selected surrogate model is an adequate fit,

the following parameters and expectations are derived based

upon the selected model, the initial condition x and the
0

constraint N(W+L) < M:

a. The ARMA(p,q) process stationary mean as h approaches

infinity as a limit

= lim EfYhixo] (2.4)
h-

b. The expected value for YN,W,L

E[1 1 - E[YN'w,LIxo]

A N W+L (i)
E[p] - EIl/N Z (1/L Z Y ) ] (2.5)

i-l tfW+l t

where (i) is an index which indicates a particular repli-

cation, e. g., i 1,2,..., N.

c. The variance for YN,W,L

VAR[p] - VAR[-N,W,L Ixo

N W+L (i)
VAR[^] = VAR[1/ Z (1/L Z Y ) ] (2.6)

i-l t-W+l

10. Given the results of derivations (2.4), (2.5) and (2.6), the

mean-squared-error objective function is minimized through ex-

haustive enumeration with respect to N, W and L.

That is:

Min MSE (YNWLIXo) VAR[Vl] + [E[] Il 2 (2.7)

subject to:

N(W+L) < M

N, W and L integers and > 0.

11. Perform a sensitivity analysis to determine if N, W and L are

sensitive to the estimates for the parameters used in the ARMA
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(p,q) model. Extreme sensitivity of N, W and L to model param-

eters will shed some doubt as to the value of W and L and per-

haps N.

12. When N, W and L have been determined, the simulation experiment

can be continued in consonance with N, W and L and the station-

ary mean estimated using only (N)(L) of the data. For example,

the average X is computed in the following manner:

N W+L (i)
X- [I/N Z l/L E X 1 (2.8)

i-l t-W+l

The resulting estimate for the stationary mean will be approx-

imately optimal when measured in terms of the mean-squared-

error criterion.

The preceding steps will be expanded upon in Section 3. Figure 2-1

portrays the flow of the methodology and highlights key decision points.

3. AN APPLICATION. To demonstrate the utility of the methodology,

a simple AR(l) autoregressive model of the form

Xt  0(Xt_- ) + p + at  (3.1)

where

0 < 0<I1

E[a] - 0
t2

E(al , st

ci was used to generate a stochastic process {Xt ; t-1,2,..., o} where ob-

servations are recorded at discrete equidistant points in time t-l,2 ....
2

Model parameters were specified as: - 0.9, V - 10.0, a 2 1.0 and2 a
at - NID(O, a ). Budget constraint N was set equal to 1000 and to in-
duce transient behavior, x was set equal to 30.

The model was run to collect h - 250 observations and the last

fifty observations were used to estimate the autocorrelation and partial

autocorrelation functions. Figure 3-1 displays graphical plots for both

functions; these plots are normally used for process identification.

Examination of Figure 3-1 readily indicates that an autoregressive model

of the first order, e. g., an AR(l) model, is a likely candidate for a
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-' model to characterize the process. Of course this is a correct choice,

however, in a practical situation the underlying model structure which

generated the two hundred and fifty observations would not be known

a priori.

Given the assumption that an AR(1) model is adequate, the average

for the last fifty observations and the autocorrelation coefficient rI ,

which is used as an initial estimate for 0, were used to initialize a

Hooke-Jeeves pattern search algorithm.

The Hooke-Jeeves pattern search method is used in a fasion simi-

lar to the Box and Jenkins non-linear least squares method in that a

vector of estimated parameters

( -) = (Ol 2' * ' " 2) (3.2)

is used to compute a sum of squared shock terms S(4, 8, p) where

A ^ h ^2

Z a (3.3)
t-l

The at are the estimated shock terms given a specific ARMA model,

estimated parameters and the original time series observations. For an

AR(l) model, each at is estimated in the following manner:
i!at M x t - (x t-l - U) - V, t-1,2,..., h (3.4)

A Twhere x and x e are the original time series data.

iTheHooke-Jeeves pattern search routine attempts to minimize S(
8, 1j) by individually varying each of the parameters in the vector ( ,
A A

e, P) by small increments to search for smaller and smaller values for
the squared sum of shock terms S(O, 8, P).

Upon completion of the Hooke-Jeeves pattern search, the estimated

shock terms {at ; t-1,2,..., h} were standardized and subjected to a

Chi-square test to test the hypothesis that the at are NID(O, a ). The

Chi-square test was conducted at the a - 0.05 significance level and

with eight degrees-of-freedom. The Chi-square test is designed to have

ten cells for data, hence the need for h > 219 observations. One degree-

of-freedom is lost due to an inherent characteristic of the test and
2the other due to the need to estimate a . The mean for the probability

A a
distribution of at is assumed equal to zero.
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Table 3-1 presents a summary for the information used to initialize

the Hooke-Jeeves pattern search and the results that were forthcoming.

The p term shown in Table 3-1 is an estimate for the process stationary

mean.

Table 3-1

Hooke-Jeeves Pattern Search

2
x

H-J Input H-J Estimated Parameters Statistic
-A ^2

x r. P a

13.087 0.816 10.043 0.955 0.897 5.718

Since the Chi-square statistic X2 = 5.718 was found to be less2

than the table value of X 0.05,8 = 15.5 [7], the Hooke-Jeeves estimated

parameters are tentatively accepted prior to additional testing with a

two tailed paired t test. To conduct the two tailed paired t test, an

independent surrogate time series (yt ; t-1,2,..., hi was generated with

the initial condition y - x 0. The parameters used in the surrogate

model are those that were generated by the Hooke-Jeeves pattern search.

Given the original series {x , t-1,2,..., h} and the surrogate series

{yt ; t-1,2,..., h}, a pair-by-pair two tailed paired t test was con-

ducted to test the hypothesis that the means for the two series came

from the same parent population. The two tailed paired t test was

conducted at a significance level of a = 0.05 with an associated two

hundred and forty-nine degrees-of-freedom. For the two series tested,

the statistic t - -0.730, therefore, the absolute value of t was less

than a table value of t0. 05/2 ,249 -_+ 1.960 [71, and the surrogate
model mean was not rejected as being equal to the x } series mean.

t
Based on the Chi-square test and the two tailed paired t test, the

surrogate series {y } and model were considered an adequate characteri-
t

zation for the series {x t.

Having obtained an adequate surrogate model, for example

- 0.897(Yt1 - 10.043) + 10.043 + at  (3.5)

- 30
* ~Yo 3
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.1

a - NID(0, 0.955)t

the mean-squared-error for X, or rather its surrogate Y, was derived

and minimized in terms of N, W and L through exhaustive enumeration.

The mean-squared-error for Y is obtained by derivation of equation (2.7)

for an AR(l) model, which after a modest amount of effort leads to the

objective function and constraints:

2 2-2 "W "W+L2
Mm SEfy xI (x -i) d (q - ) +Min "2E [Y ,O,LIx 0 ) 2 2L2 (1l-4 )

^2 "2W+1 1lL
Ca - _1_ ) [2+

A '(3.6)LN(- )2 L (1- $2)

subject to:

N(W+L) < M

N, W and L integers and > 0.

Minimization of (3.6) resulted in the following optimal values:

N 1 1, W = 19 and L =981 given a budget constraint M = 1000. In con-

trast, the exact values for N, W and L for the model given in equation

(3.1) are: N - 1, W = 20 and L - 980.

Sensitivity analysis, e. g., varying each of the estimates ,

and Ca plus and minus one per cent and noting the change in mean-
a

squared-error value, indicated that the mean-squared-error for the par-
ticular test case studied was sensitive to the estimate for , but rath-

er insensitive to the estimates for V and a . Table 3-2 presents a
asummary for the effects of parameter variation on the estimated mean-

squared-error and N, W and L.
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Table 3-2

MSE Sensitivity

% A MSE
Parameter Estimates MSE N W L_ Change

1 21.071xlO 9.110x10 2  1 19 981 0.006
1 -2

1.082x10 9.110xlO 1 19 981 % Ref.

1.093xi01 9.109xi0 -2  1 19 981 -0.006

9.453x10 -1 9.019x10 -2  1 19 981 -0.995
^2 -1 2
0F 9.548xi0 9.110x10 2  1 19 981 % Ref.

9.644x10- 1 9.200x10 -2  1 19 981 0.995

8.879x10 -1 7.703x10- 2  1 18 982 -15.442
-1 -24 8.969x0 -  9.11Ox10 1 19 981 % Ref.

9.058xi0-I  1.094x10-1 1 21 979 20.085

Figure 3-2 depicts the trade-off between estimator bias squared and

variance as a function of discarded warm up observations. It is inter-

esting to note that when a similar experiment was conducted with x0- ,

the resulting value for W was W = 0. Hence, and as expected, warm up

observations should not be discarded when the AR(l) simulation experi-

ment is initialized with x0 set equal to the steady state process mean.

4. QUEUEING APPLICATION. Given initial success with an AR(l)

model, an attempt was made to determine optimum operating conditions in

terms of N, W and L for a M/M/l queueing process. A queueing model was

run with a traffic intensity p - 0.8, an initial condition x0 = 0 and a

budget constraint M - 1000. The model response variable, X , was the

waiting time of each customer in the system.

Application of the methodology to the first 250 observations indi-

cated that an AR(1) model was an adequate surrogate for the queueing

model. Based upon minimization of the mean-squared-error for the sur-

rogate AR(l) model, N, W and L were determined to be N 1 1, W = 0 and

L - 1000. This result is in consonance with the findings of Wilson

and Pritsker [8] who determined that if a M/M/l model is started with

its initial condition set equal to the process stationary mode (e. g.,

x- 0) then, no warm up observations should be discarded to achieve

380

o6



0.1040-

0.1030-.
1, 0.045

0.035

w0.1020- 1

0.015

0. 1010-

BIAS 2

0.1000- Cx IZ-
0 5 10 15 20 25 30

DISCARDED WARM UP OBSERVATIONS W -

Figure 3-2. Trade-off Between Bis2and Variance

381



a minimum mean-squared-error estimator for the process mean.

5. CONCLUSIONS. The preceding discussion has presented a syste-

matic methodology for estimation'of N, W and L to achieve an approxi-

mately minimized mean-squared-error estimator. The mean-squared-error

criterion provides a performance measure with which to conduct an opti-[ mal trade-off between estimator bias squared and variance given a

budget constraint M. If a discrete event autocorrelated time series

experiment is executed using the values estimated for N, W and L and the

constraint M, a minimized mean-squared-error sample average can be com-

puted. Numerous elementary test cases have been executed using BASIC

software with a microcomputer and favorable results have been achieved.

A corollary benefit of the methodology is that it provides a mech-

anism for an experimentor to evaluate the possible penalty associated

with data stream truncation and independent simulation replications.

It is anticipated that the methodology could be used to estimate su-

perior simulation model initial conditions and that the surrogate model

approach could be used for analysis of complex simulation processes.
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DATA BASES AND APPLICATIONS

MORTON A, HIRSCHBERG

US ARMY ARRADCOM BALLISTICS RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

PROBLEM

WE HAVE BECOME MASTERS AT THE ART OF DATA

COLLECTION BUT HOW ARE WE DOING AT ANALYZING

DATA?

Editorial Remarks: This articale consists of a series
of unnumbered slides. Most slides take up a full page.
This page has three slides on it.
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A

DATA IS A COLLECTION OF OBJECTS IN A PARTICULAR CONTEXT

MEANINGLESS IN ITSELF.

INFORMATION IS A MANIPULATION OF DATA IN A PARTICULAR

CONTEXT MAY NEED TO BE SUPPLEMENTED WITH DATA

FROM OTHER CONTEXTS.

SENSITIVITY ANALYSIS IS TESTING INFORMATION FOR ITS VALIDITY.

SYNTHESIS IS THE EXPLANATION OF INFORMATION.

i3
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CAPTURE DATA

2. ADD DATA -- EXAMINE DATA

SELECTIVELY RETRIEVE DATA

MANIPULATE DATA

SELECTIVE DISPLAY OF INFORMATION

SYNTHESIS AND SENSITIVITY ANALYSIS

THE DESIGN PROCESS
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THE DATA

TEST FIRINGS (GUNS AND MISSILES)

VEHICLE DATA (USAGE, .PARTS & SPARES, MAINTENANCE)

VULNERABILITY (OFFENSIVE AND DEFENSIVE)

PERSONNEL (MEASUREMENTS, HISTORICAL, WOUNDING)

CHEMICAL (C&B, FUELS, SMOKE)

TACTICAL (COMMUNICATION, GAMING & MODELING)

MANAGEMENT (PAYROLL, FINANCE, ETC.)

DEVELOP STRATEGIES TO

COLLECT DATA

VALIDATE DATA

SELECTIVELY RETRIEVE AND DISPLAY.DATA (REDUCE DATA)

DERIVE INFORMATION

VALIDATE INFORMATION

GENERATE EXPLANATIONS (SYNTHESIZE)
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PURPOSES FOR DATA BASE SYSTEMS

STORAGE AND RETRIEVAL

UPDATING

RETRIEVAL AND CALCULATION

GENERAL RETRIEVAL

SELECTIVE RETRIEVAL

DATA VALIDATION

DATA ANALYSIS

MAJOR TYPES OF DATA BASE STRUCTURE

FLAT FILE

RANDOM ACCESS

HIERARCHICAL

NETWORK

RELATIONAL
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F
FLAT FILE

SEQUENTIAL ACCESS

D I RECTORY

ORDERED ELEMENTS

TAPE OR DISK

RANDOM ACCESS

DIRECTORY

NON SEQUENTIAL ACCESS

DISK
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HIERARCHICAL

TREE STRUCTURE

HI STOR ICALLY POPULAR
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ADVANTAGES

NATURAL IN FORM

MINIMAL DISTINCTION BETWEEN MODEL AND DATA

BASICALLY SEQUENTIAL

DISADVANTAGES

ADDING

DELETING

UPDATING
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NETWORK

AI

I'I
TREE STRUCTURE WITH POINTERS

I
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ADVANTAGES

FLEXIBLE STRUCTURE

EASY TO ADD TO

EASIER TO UPDATE

DISADVANTAGES

DELETING

POINTER INFORM~ATION
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RELAT IONAL

TABLE
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ADVANTAGES

NATURAL STRUCTURE

ADDING

DELETING

UPDATING

DISADVANTAGES

NONE!
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INTERFACING APPLICATIONS TO A DATABASE

TOOLS

DATA BASE MANAGEMENT SYSTEMS

GRAPHICS

SIMPLE STATISTICS (MEAN, STANDARD DEVIATION, ETC.)

GRANDER STATISTICS (LINEAR AND MULTIPLE REGRESSION)

ERROR BOUNDS

COMPLEX STATISTICS (FACTOR ANALYSIS AND CLUSTERING)

VAGUE ERROR BOUNDS

DIMENSIONAL ANALYSIS (REDUCTION TECHNIQUE).

MODELS (QUEUING AND GAMING)
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DATA BASE MANAGEMENT SYSTEMS

CREATA BA SE

SYSTEM 2000

INGRES

DMS 1100

DMS 170

ORACLE
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PARTICULAR TOOLS

GRAPHICS

PAGE PLOTTERS

CAL COMPS

COMPUTERVIS ION

TEKTRONIX

HEWLETT PACKARD

398



PARTICULAR TOOLS

STATISTICAL PACKAGES

BD

SPSS

MATH PACK

STAT PACK

OMNITAB

MULTIPLE REGRESSION

FACTOR ANALYSIS (ANOVA)

CLUSTERING
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PARTICULAR TOOLS

REDUCTION, ANALYSIS, MODELING

BUCKINGHAM Pi THEOREM

NASTRAN

GNSS

SIMSCRIPT

DYNAMO

GASP IV
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MEAN SPRAY ANGLE AND PFR"ENTAGE 01: hiGH
MASS PARTICLES BY CLUFSTER

CLUSTER MEAN SPRAY ANGLE (DEGREES) PERCENTAGE HIGH MASS PARTICLES

1 15.76 18

2 29.09 77

3 24.88 62

4 28.23 61

S 29.74 60

6 17.71 19

7 21.80 27

8 2M.1S SO

9 2S.80 49

10 31.73 87

11 36.20 100

12 38.76 100

TABLE V

CLUSTER GROUPING BY SPRAY ANGLE

CLUSTER GROUP MEAN SPRAY ANGLE (DEGREES) PERCENTAGE HIGH MASS PARTICLES

1,6 16.84 18

3,7,9 24.51 47

2,4,S,8 29.06 61

10,11,12 33.92 92
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THE TRUE PURSUITS OF SCIENTIFIC DATA ANALYSIS

(AND GOOD ENGINEERING) EXTEND NOT ONLY TO THE ANALYSIS

OF NEW DATA IN OLD AND NEW W4AYS: BUT, INCLUDE THE

INCORPORATION OF OLD DATA TO BE ANALYZED IN (OLD AND)

NEW WAYS.

4
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MANAGEMENT INFORMATION SYSTEMS HAVE BECOME

ENTITIES ENTIRELY IN THEMSELVES AND NOW OPERATE

ACCORDING TO PARKINSON'S LAWS.

NO LONGER REASONABLE IN TERMS OF TIME OR COST

TO CONTINUE TO DEVELOP LARGE SPECIAL PURPOSE

DATA SYSTEMS.

MAY BE ONLY OF ACADEMIC VALUE TO DEVELOP ANY

FURTHER DATA MANAGEMENT SYSTEMS.
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ANSWER TO THE D I LEMA
(A PROPHECY)

DEVELOP MODULAR SPECIAL PURPOSE PRE- AND

POST PROCESSORS (HARDWARE AND/OR SOFTWARE)

WHICH WILL WORK IN CONJUNCTION WITH EXI STING

COMMERCIALLY AVAILABLE DATA MANAGEMENT

SYSTEMS. SUCH PROCESSORS COULD ALLOW A

VARIETY OF INDIVIDUALLY TAILORED QUERY AND

REPORTING FEATURES WHILE STILL MAKING USE

OF THE DBMS' OWN POWERFUL COMMAND STRUCTURE.
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I

CAUTIONS

BUILD DATA BASE SLOWLY

SELECT DATA MANAGEMENT SYSTEM(S) CAREFULLY

REDUCE THE PROBLEM AS YOU PROCEED

SYNTHESIZE AS YOU PROCEED

r

L4
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A TIME TO RE-THINK SMALL

C. Glenvil Whitacre
Chemical Systems Laboratory

Aberdeen Proving Ground, Maryland 21010

ABSTRACT. The process of adapting a program, now working on a large
computer, to a smaller computer, which is more limited in capability but
accessible and convenient to the user, is explored. A specific example is
used to illustrate the process.

The DOD methodology for computimg chemical safety distances had been
programmed in the conversational mode on a UNIVAC 1108 system and was offered
over AUTOVON lines on a 24-hour basis to the arsenals. The arsenal personnel
did not make use of this. The methodology was then studies for possible
simplification. Approximations were developed for some functions, and the
program was subdivided into five self-contained units. Each was then reduced
to one page of FORTRAN and tested in that form. From these, five pocket
calculator programs were developed. These were documented and distributed to
the arsenals and are now being used.

It is suggested that this approach should be considered for other Army
applications in the field.

PRESENTATION. For those of us who consider ourselves old timers in this
computer game, we've seen the technology change and the hardware come and go.
If you've optimum addressed a drum memory, programmed with plug boards, or
been knee-deep in punched paper tape, you're not likely to forget it, although
you try. Of course, there were high points. If you ever operated the
Burroughs 205 in a dark room, you know where the final scene from Close
Encounters comes from.

Then, for some of us, there was a long fight with MISD to keep open-shop
access for S and E applications. Having been through all of this, now with
easy access to a large system with automatic files and many language processors,
why should anyone in this comfortable promised land of milk and honey transfer
a program running on that system back to a pocket calculator?

This seems especially unwise if the program has to be subdivided into pieces
and parts of it a~proximated. Yet this is an operation that I have been
engaged in for the last couple of years and, at this point, am prepared to
defend as a practical solution to this particular problem.

I will describe the problem, some of the stages we went through in attempting
to solve it, and then our present solution. This will tell you what the program
does and, I hope, will outline a process which may have application to other
areas.
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I'm thinking here of the military technical manuals and field manuals
where any problem has to be reduced to what can be solved on a graph, nomograph,
or slide rule. This has generally oversimplified the solution. The present
day programmable calculators represent the next step as a computational aid
yet are something that can still be carried in the pocket. The artillery people
have gone this route, so some are already available in the field.

The mathematics of our sample problem is essentially the moving trivariate
Gaussian distribution used to compute the downwind concentration or dosage which
would result from the release of vapor or small aerosol. In its basic form,
this is not a very difficult calculation; but as we encountered it, there were
several complications.

Vie were applying this to hazard distance calculations needed as guidance in
planning the handling and transport of chemical agents within the Department
of Defense (DOD). As a result of Public Law 91-190, a requirement was established
that all operation plans involving these agents would contain a formal hazards
analysis. This analysis would establish a maximum credible event (MCE) for the
operation and would compute a downwind hazard distance. This becomes part of
the package staffed through DOD, so the methodology had to be formalized to a
high degree.

The methodology that was proposed and accepted contained several complications
beyond the basic Gaussian. First, the typical solutions for the puff (instantaneous)
release or continuous (steady state) release were not adequate for an accidental
release such as a spill or a fire. A more complex form called the semicontinuous
was developed which could trace the release in time.

The second complication resulted from a property of some of the agents.
For these, the physiological effects were dependent on the time over which a
given dosage was accumulated. Thus, the downwind dosage was not enough; you also

* had to trace the time of accumulation to estimate the effect. In the original
methodology, this was treated as an iterative procedure, looking at larger and
larger time slices at each downwind point to locate the maximum effect.

(Viewgraph )*

The third complication came from this infinite series for estimating the
reflection from a barrier, such as an elevated temperature inversion. This
sums the multiple reflections from that barrier. It's not much in itself, but
the first time I included it in a program, I went for the usual 10- 36 accuracy,
and the computer disappeared into a time warp and when it came back, I found it
had generated 80,000 terms in the series. After that, a more realistic limit
was used. If one traces this reflection far enough, it can be assumed that the
vertical distribution is uniform and then this equation, known as the Box Model,
can be used.

Viewgraphs can be found near the end of this article.
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This methodology was agreed upon by representatives of the three services
and published as a technical paper by the DOD Explosives Safety Board in 1975.
All of the arsenals storing or handling chemical agents were directed to use
it, but only a couple who still had the original programs on which the methodology
was developed could comply.

(Viewgraph 2)

To remedy this, we were tasked to develop a handbook which could be used
by the arsenals. This took the form of precomputed solutions presented as
graphs of dosage versus downwind distance. This is total dosage from an
instantaneous source for neutral stability and a range of values of the height
of the mixing layer. (Actually, this graph has been simplified by graphic
arts for your benefit; the original was on full log-log paper and you were
expected to read it to three digits of accuracy.) This is one of the simpler
cases; when you get to the semicontinuous with two-minute correction, the
wind speed, time of release, and height of the mixing layer all interact and
things get quite complicated.

We developed a system of correction factors for this, but this required
reading a number of graphs in succession, and the human variation in results
was noticeable. (Safety people don't like variation.)

This handbook was published by US Army Materiel Development and Readiness
Command (DARCOM) in March 1977. It was a big book, with 180 pages like this,
representing thousands of curves.

(Viewgraph 3)

As a parallel effort, the programs we had used to generate these curves
were organized as subroutines under the control of a master program which was
written in conversational mode. Most of the numeric data on munition systems
and agents were stored as tables and called in by symbolic answers. Once
requested, the program asked the first question; this answer determined what
the next question would be, and so on to Qet the information essential for a
given solution. A number of output options were provided so that different
aspects of the toxic field could be displayed.

Our idea was to provide the handbook as a reference but maintain this
program on the Edgewood computer for day-to-day use by the arsenals. A Chemical
Systems Laboratory (CSL) technical report was published in June 1977 to document
the operation of this program.

We have continued to use this program. US Army Toxic and Hazardous
Materiels Agency (THAMA), and the Chemical School use it; US Army Materiel
Systems Analysis Activity (AMSAA), Test and Evaluation Command (TECOM), and
Aberdeen Proving Ground (APG) Safety Office have requested access to the
program. But the remote use we had expected did not develop, at least not over
the next year and a half.
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The reasons for this lack of interest were many. Getting access to or
approval to purchase a terminal was a problem. Most of the arsenals did not
have what you might consider "computer people" and they seemed reluctant to
get involved with this monster (which might ask embarrasing questions). They
complained that AUTOVON was not reliable. Then there was the very real problem
that a safety inspection team could say "all the telephones are out" and you
were up the creek if you were depending on the computer for answers.

Then in 1978, a series of events led to what we now call the simplified
methodology. It produced the same answers (or a slightly safe-sided version
of the same answer) but eliminated the infinite series used to compute the
transition to the Box Model and the iterative procedure used to develop the
two-minute correction.

This started with an attempt to develop a rule of thumb for the handbook
users which would give the distance at which the Box Model was safe. This was
done by modifying the big program to capture the distance at which the reflective
model deviated from the Gaussian by a specified amount and then again when it
approached the Box Model by the same amount.

(Viewgraph 4)

This produced tables like this, of distance versus height of the mixing
layer and atmospheric stability.

(Viewgraph 5)

To get to the rule of thumb, we then fitted these data with equations of
this form, where Hm is the height of the mixing.layer and B is the slope of
the sigma z curve. .

(Viewgraph 6)

It then occurred to me that these two distances, Xl and X2, could be considered
as break points between the two forms of the model. The full Gaussian would* I be used up to Xl, and the Box Model beyond X2, and the transition could probably
be fit by a log-log segment. This would slightly overestimate the dosage, but
that would be all right. This was a safety program. This would eliminate the
infinite series and make the equation for each segment rather simple. Here
are the equations for total dosage from an instantaneous release.

(Viewgraph 7)

Although this is the simplest form, it is not the semicontinuous and does
not have the two-minute correction, but it can solve a number of practical
problems, so we tried this in FORTRAN. Now the data, logic, and algebra for
this took half a page. And, for the first time, I wondered if something likethis could be programmed on a pocket calculator. Of course, we had pocketcalculators (they were cheaper than a service call on a Frieden), but I hadn't
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taken them seriously as computers up to this time. I had a Texas Instruments
SR-52. I dug into the language and was able to get a version of this program
to run on the calculator.

I was now fascinated by this approach and began to experiment with the two-
minute correction. Using the big program as the standard, I ran it for ranges
of variables, captured the final dosage correction factor as a function of
distance, and converted this back to an effective time.

(Viewgraph 8)

I then looked at these values and found they could be fitted by an equation
of this type.

(Viewgraph 9)

This could be plugged into the dosage correction factor and then into the
segment equations.

(Viewgraph 10)

The semicontinuous was a bit more difficult, and the result a bit messy.
This is the effective time where ts is the source time, u is the wind speed, and
x is the distance.

(Viewgraph 11)

And this is the equation for segment 1.

This was the most general form of the equation, but I couldn't solve it
directly for x, the distance to a given dosage. I would like to have included
source geometry (the size of the initial cloud), but this presented a similar
problem. However, one often wants to investigate the way dosage decreases with

'1 distance, so solving for dosage as a function of x and then interpolating for
the specific distance would be a way around all three of these problems. The
interpolation could follow the functional form of the equation and be quite
accurate.

With this approach, the general equation was subdivided into a system of
factors which would represent the difference between the instantaneous, the
semicontinuous, and the continuous with and without the two-minute correction.
A logic was then designed to recombine these factors as needed to form a
specific solution. This took 59 lines of code in FORTRAN, but that included
tables of the met parameters, source geometry, and a model for combining the
doses from inhalation and deposition on the skin.

We then went to the Texas Instruments Model 59 and were able to program a
version of this which would run automatically.
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(Viewgraph 12)

Now we could reproduce any one of these thousands of curves from the
handbook on call, and this made it possible to design a new handbook based on
the pocket calculator programs. This was published as a field handbook in
August 1978. To support this program, the field handbook also contained programs
for computing the evaporation from a spill and another to select the atmospheric
stability following the Turner logic for the Pasquill categories. This was
followed by an addendum to the field handbook which contains a program for
downwind distance based on concentration. All of the previous work had been
in terms of dosage.

The US Amy Nuclear and Chemical Agency (USANCA) became interested in this
field handbook, and COL Adams placed an announcement in a Surety Information
Letter. This must have been sent all over the world, because we began getting
requests from US artillery units everywhere. They said they had the TI-59
calculator to do their own trajectory calculations and wanted these programs
to add a chemical capability. Their programs are somewhat different, and we
haven't gotten any definite feedback yet from artillery units, but we know the
arsenals which store chemicals are using the pocket calculator programs on
a regular basis.

If we attempt to summarized or draw conclusions from this escapade, we
might say there are applications where the big system, even with remote terminals,
may not be the most practical. If a programmable pocket calculator is the
way to go, the conventional system and FORTRAN are a very convenient, familiar,
and rapid way to develop and test short program candidates for the pocket
calculator.

In this bigger-is-better world, I would advise anyone who takes this
approach to be prepared for a cold to neutral reception. It's hard to impress
your boss with very little, and one of these programs in FORTRAN is very little.
So when you bring him this little jewel and say "look what I've done this
month," he sees a page of FORTRAN and may not be greatly impressed. Even after
you ennumerate all of the options and show him what it replaces, there is still
an underlying (if unstated) comment, "so what have you been pulling all these
years with the old version?".
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VARIATIONAL METHODS OF CONVOLUTION INTEGRAL AND OF
LARGE SPRING CONSTANTS - A NUMERICAL COMPARISON

Julian J. Wu
U.S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL
Watervliet, NY 12189

ABSTRACT. Finite element solution formulations have been carried
out for a simple initial value problem based on two different varia-
tional statements: that of convolutional integral developed by Gurtin
and that of large spring constants adapted by this'writer for initial
value problems. Numerical results indicate that both generate conver-
gent solution to the given initial value problem of a spring-mass
system subjected to a harmonic forcing function.

1. INTRODUCTION. Through a simple initial value problem, this
note demonstrates the use of the finite element discretization in con-
junction with two variational formulations and compares the numerical
results. The variational principles of convolutional integral for
initial problems were developed by Gurtin some sixteen years ago (ref.
1 and 2). Since then these formulations have been applied to obtain
solution of transient problems (ref. 3 and 4). However, the time dim-
ension was treated separately from the spatial dimensions in the finite
element approximation schemes. The viewpoint adopted in this note is
that the separate treatment of spatial and time coordinates is unnec-
essary. Since the initial value problems are nonself-adjoint, the
corresponding variational problems can be formulated with the help of
adjoint field variables and thus can be used in Ritz-finite element
solutions. One such formulation is used here to compare with the for-
mulation using convolution integral in terms of numerical results for
a simple initial value problem.

Let us consider a simple mass-spring system. The differential
equation of the displacement u(t), a function of time t is

m + ku- fo cos Wft (1)

where m is the mass, k, the spring constant. A dot (-) denotes differ-
entiation with respect to t. The parameters fo and wf denote magnitude
and frequency respectively, of the forcing function. The initial condi-
tions are given as

u(O) - U0  6 z(0) - u1  -(2)
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We shall further use the equations

" k fo

Thus Eq. (1) has the form

U + tou- f cos Wft (3)

2. VARIATIONAL FORMULATION OF CONVOLUTIONAL INTEGRALS. The varia-
tional principle for the problem defined by Eqs. (3) and (2) is (ref. 2):

61(u) - 0 (4a)"

where

I - 2j [u(t)*u(t) + W2 t*u(t)*U(t)j

_=0  + tt 49 COS ft]*u(t) (4b)
- +f + -f

The operator * defines a convolution integral in the following equation
t

u(t)*v(t) - f u(t-T)v(T)dT (5)
0

where u(t) and v(t) are two arbitrary functions of t.

To see that the variational problem of Eqs. (4) is indeed equiva-
lent to the original problem defined by Eqs. (3) and (2), one writes,
from Eqs. (4):

1-" [u(t) + 't*u(t) - (u° = + ult " -_T cos Cft)]* 6u(t) " 0
Wf f

for arbitrary Su(t). Thus, 61 - 0 leads to Eq. (6)

u(t) + W2 t*u(t) - (u +_T + ut - cos ft) -0 (6)0 hf 1 (hff

It is clear from Eq. (6) that u(O) - u0 .

Differentiate Eq. (6) once, one has

;i(t) +aW2 f u( )d - u1  f sin raft - 0 (7)()+ :o u()hf I  -

Eq. (7) gives 4(0) - ul Thus both of the initial conditions are sat-
isfied. The differentlal equation is recovered when Eq. (7) is differ-
entiated once more. Note that in obtaining Eq. (7) the following
differentiation formula has been used.
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Let
t

F(t) -JV(t-'r)U(T)dr
0

Then

dY IJ-7 (t-T)U(T)dT + V(O)U(t)
dt 0a

3. VARIATIONAL FORMULATION WITH A LARGE "SPRING" CONSTANT. Consider
the following variational problem

61(u'v) - 0 (8a)

wihI (u,v) 1 0 ii dt + f(wu-f)v dt
00

+ cz[u(O) - u 0 ]v(l) u 1 v(O)

In Eqs. (8), u(t) Is the physical field variable and v(t) is the adjoint
variable. This variational problem is unconstrained since the trial
functions of neither u(t) nor v(t) are subject to any end condition
requirements. To see that the set of Eqs. (8) is equivalent to the
original initial value problem, it is only necessary to carry out the
first variation and perform once integration-by-part. Thus, one has

81(u'v) -0

-f (u*'fw'u-f)Cv dt
0

+ {cslu(0) - U01 - 5(1))6v(l) + [WzO) - ulv(0)

+ f (04W'v)6u dc
0

+ {oL v(l) + ;(o)}6U(0) (l)8u(l) (9)

.4It is clear then if one chooses v(t) - 0 and let 6v be completely
arbitrary, Eqs. (9) reduce to the original initial value problem as a
approaches infinity.

4. PROCESS OF FINITE ELEHEN DISCRETIZATION. In case of convo-
lutional integral, the variational equation used is Eq. (6) in Section
2. Rewrite Eq. (6) as

61 -Ju(t) + ua't*iz(t) - F(t)]* du(t) -0 (10a)
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where u + f + ut~ Cos wf t (l0b)

In Sq. (10a), there are three convolution integrals to be evaluated;
(a) u(t)*8u(t)l (b) wlt*u(t)*6u(t); and (c) F(t)*du(t).

(a) For u(t)*6u(t):
t

u(t)*#Su(t) - I(t-T)du(T)dr
0

Let
T- ut

one has then
1

0
Consider

1 - f (l-i)6ibdi
0

This integral is evaluated by finite element discretization.

L Li
I - ; (l-T)Iu(T)d;

Let

i L

- -L T-i + 1

L

Hence

;(14') - -1(L-ti+1)]

ItI
1'.~j



Thus

Use the matrix representations for the shape function and generalized
coordinates. One writes

;()(C) - a T(C0 U(i)

and

a(Li~l (iC)- aT(l-&OU(Li'+l)

Thus

Or

L ,iul

where a(C)a T (1-E)dC (11a)

Hence

i-i M (-il

(b) For W 2 tu(t)*6u(t):

The evaluation of this double convolution integral is Somewhat more
complicated. First consider f

0

Then

I - tiru(t)3*6u(t)
t t-

- J (f(t-X-T)u(T)dT)8u(X)dk

0 0
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Again let

t t

Thus u(r) becomes u(), 8uO,) to 6u(), etc. One has

1 l-A~-
S- t 1 J1- (l-X-T)u(T)8u(X)6 dX (12)

0 0

It should be pointed out that the change of variables from r,X to T,X
(so that the limit of integration is changed from t to unit) is carried
out after writing down explicitly the double convolutional integral
and not before. This is due to the fact that the definition of a
convolution integral requires that t appears explicitly in the inte-
grals. To evaluate I of Eq. (12) we write

It~I

and work on I instead.
1 l-X

- (1- -)( u (T) u(r ) d-rd)
0 0

The area of integration in (X,r) plane is the triangle bounded by lines
- 0, r - 0 and T 1 -X (shown in shaded area in Figure 1). Using the

step function

H(l-X-r) - 1, T, 1

0, T > 1-

one can write 
11 fl

0 0

Equation.(13) will be used for finite element discretization. We shall
divide the unit square in (X,T) plane into smaller squares of L x L
(Figure 2). Let

- ~i)- a - i + 1

(14)
-(i) - - j +1

1 4.32
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Thus

1 T- (L + 1 - i - j + (1-&-n))

and
1 L L 1 13 (Lj

- 1 1 f f li1~ (L+l-i-j+1-&-n)
1i1 j 1 0 0

M~--~--o (Ti)8 (E)dnd& (15)

Or,
L L

I 1 1 11 /L3 (16)

with11
Iij f I H~j

0 0

* +-' (ri)6) W y~' ( )d~dri (17)

Or,

1 - - Ti I + j -(L+1)

Thus, three cases to consider forHMW ()-111
(ii) HMi) -O0 1 i+j > L +1 (18)

(ii (J - H~l-g-n) , i + j -L + 1

For case (i), one has

i- f f (L2iJ;J(E8()Cdd
0 0

-6 (i)T if ()

0 0

6 5(i) l(i)y(i)
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fl f 1 (L+2-i-J.-C-n)a(C)a T(C)dndC
.0 0- -

For case (ii),

For case (iii)o ~~E T)y 1 ()rd

0 0

I f (1En j)()6 ' 0dd
0 0

- :) f 1a(E) f - 1EnaT(n)drld& Y(i)
0

6 y~(i)T1 - (i)

- 1 1-C T
A !m a~ f (1-C-n)a (TI)dndE
-0* 0

Consequently,

3iL (19)t ~I I i-ij

i +J< ~L +1 w I Y'A'JYJ

i + j>L + 1 - j0 (20)

i + JL +1 -p- Mi; (j)

21~i -1 ) t F

0 0-
(21)

A !MJaF (l-E-ri) a T(ri)d
0 0-
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_________________________ 7

And thus

W t*u(t)*8u(t) -Wt' 0 !t! L 1L (2
L3i-i i-i i

(c) For F(t)*Su(t) with F(t) given in Eq. (10b), one has

F(t)*Su(t) - (a+bt+c co Wf t)*Su(t)

-a[1*8u(t)] + blt*tSu(t)J + ctcos wft]*Su(t) (23)

where, from Eq. (l0b):

a " uO b = ,c (24)
W ff

Now, for Eq. (23), one has
L1

l.*Su(t) - S U(i)T f a(&)d& (25)

2 L fiT 11
t*8u(t) - t 6U''){(L-i+l) f a(E)dC - f Ca( )dC) (26)

and

tL (i)T 1 WiftCos W ft *tSu(t) - I SU f a(&) cos [--(L-i+l- )]dC (27)
i-i 0

Now, Eqs. (11b), (22), (23) through (27), a global matrix equation can
be written as

6UT ,U -6UT Fr (28)

Or
K U-F (29)

which is then solved.

The finite element discretization procedure for the variational for-
mulation using a large spring constant has been described elsewhere (see,
for example, ref. 5) and will not be repeated here.
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5. NUMERICAL RESULTS. Numerical values of the parameters in the
given example as stated in Section 1 are as the following:

m - 1.0 k - 1.0 . fo " 1.0 . W f 0.5

YO " 1.0 , Y., " 1.0

Computational results are presented in Tables 1 through 4. Table I and
2 compare results of the two methods in an interval of 0 < t < 10, which
Is about the time for a complete forcing cycle. The resuTts -or y(t)
and j(t) are excellent for both methods. As the interval becomes shorter,
0 < t < 2 as shown in Table 3 and 4, the convergence is further improved.

TABLE 1. NUMERICAL COMPARISONS BETWEEN TWO
UNCONSTRAINED VARIATIONAL METHODS

0 s t_ 10.0 10 Elements
yConvo Sprng Exact

t Integ. M Const. M _Solutioo

0 0.999 1.000 1.•000

2.0 1.769 1.770 1.768
4.0 -1.094 -1.094 -1.094
6.0 -1.920 -1.920 -1.919
8.0 0.167 0.167 0.167
10.0 0.113 0.114 0.114

TABLE 2. NUMERICAL COMPARISONS BETWEEN TWO
UNCONSTRAINED VARIATIONAL METHODS

0 1 t 4 1.0 10 Elements
-y'(t) Convo Spring Exact
t Integ. M Const. M Solution

0 1.011 1.004 1.000
2.0 -0.675 -0.675 -0.674
4.0 -1.520 -1.518 -1.512
6.0 0.780 0.778 0.773
8.0 0.691 0.690 0.689
0.0 -0.391 -0.385 -0.381
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TABLE 3. NUMERICAL COMPARISONS BETWEEN TWO
UNCONSTRAINED VARIATIONAL METHODS

0 1 t 1. 2.0 10 Elements
y Convo Spring Exact

t Integ. M Const. M Solution

0 1.000000 1.000000 1.000000
0.4 1.389154 1.389154 1.389153
0.8 1.713203 1.713203 1.713203
1.2 1.911703 1.911702 1.911701
1.6 1.938251 1.938251 1.938249
2.0 1.768413 1.768416 1.768416

TABLE 4. NUMERICAL COMPARISONS BETWEEN TWO
UNCONSTRAINED VARIATIONAL METHODS

0 . t . 2.0 10 Elements
Convo Spring Exact
Intex. M Const. M Solutin

0 0.99999 1.00000 1.00000
0.4 0.91844 0.91843 0.91842
0.8 0.67623 0.67622 0.67621
1.2 0.29662 0.29662 0.29661
1.6 -0.17425 -0.71424 -0.17425
2.0 -0.67425 -0.67413 -0.67403

In conclusion, we have observed that the numerical convergence of the
method of large spring constants, in the simple example given, is at least
as good as that of the formulation through the variational principle of
convolutional integrals. Both are easily adapted for finite element
discretization. Due to the fact that the variational principles of con-
volutional integrals can be formulated only for a very restricted class of
problems (of constant coefficients, for example). The alternate approach
of large spring constants appears to be quite attractive to obtain solu-
tions of non-self-adjoint problems in general and of initial value prob-
lems and initial boundary value problems in particular.
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COMPUTATION SCHEMES FOR SENSITIVITY COEFFICIENT OF EXTERIOR
BALLISTICS WITH VELOCITY SQUARE DAMPING

C. N. Shen and Julian J. Wu
U.S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL
Watervliet, NY 12189

ABSTRACT. The principal equation of exterior ballistics with veloc-
ity square damping term has been integrated analytically in obtaining the
solution for tangential velocity in terms of the elevation angle and
other parameters. Using the variational method, four equations are
obtained. The first one is derived from consideration of terrain slope
and the second one is determined by hitting the target. The third and
fourth equations are variations of the range and elevation drag functions,
respectively.

The computation involves integrals which can be evaluated analyti-
cally if the drag coefficient is relatively small. In simplifying the
computational procedure we can assign the launch and impact slopes and
then compute the drag functions and the terrain slope. However, this
procedure is in reverse order because physically the terrain slope is
known a priori the rounds are fired. If the terrain slopes and launch
slopes are given first, an iteration procedure in computation is required
to solve for the impact slopes. The sensitivity coefficients and the
range ratios are then computed and plotted for various terrain slopes
and launch slopes as the drag coefficients are varied.

1. INTRODUCTION. The research on sensitivity coefficients on
ballistics has been discussed in two previous works. The first paper
(ref. 1) matches the sensitivity coefficient of exterior ballistics to
that of interior ballistics, while the second paper (ref. 2) presents
the sensitivity coefficient of exterior ballistics with velocity square

-* damping. This paper continues the work of the latter (ref. 2) and
extends the analytic study in order to give numerical solutions of the
problem.

The design of a gun involves numerous parameters. These parameters
should be in such a combination that the best first round accuracy is
given. While the shell leaves the gun it has perturbations for the
muzzle elevation angle and the muzzle velocity. The ratio of the two
is the sensitivity coefficient of the interior and the exterior ballis-
tics. It is desired to compensate the errors due to uncertain changes
of muzzle velocity by the automatic response of the muzzle elevation
angle within the gun system. With a correct design this compensation
can be made by matching the exterior ballistics to the interior ballis-
tics through the analysis of gun dynamics. This process is called
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passive control since there is no external measurement involved nor instru-
mentation needed for control. This general problem can be formulated by

first investigating the sensitivity coefficients for exterior ballistics
with velocity square damping.

2. PREVIOUS WORK. In the second paper the principal equation of
exterior ballistics has a drag term which, in this case, is proportional
to the square of the velocity in the tangential direction of the projec-
tile. The sensitivity coefficient is expressed as the ratio of the ini-
tial elevation angle deviation to the initial percentage velocity devia-
tion. The work is to find analytically the sensitivity coefficient of
the exterior ballistics with velocity square damping which comes from
the nonlinear air resistance for a projectile. This principal equation
is integrated analytically in obtaining the solution for tangential
velocity in terms of the elevation angle, together with all the necessary
initial conditions. The horizontal range and the vertical range are also
expressed as integrals of certain function of the elevation angles. In
order to obtain the sensitivity coefficient it is necessary to find the
perturbations of the horizontal and vertical ranges. This procedure is
similar to that of evaluating differentiation under the integral sign.
The perturbation of the ranges is the sum of the perturbations due to the
initial velocity, the initial elevation angle and the impact elevation
angle. By setting to zeroes the range perturbations we can group the
coefficients of the perturbations into two separate equations. The ratio
of the perturbations for initial elevation angle to that for initial veloc-
ity is the sensitivity coefficient for exterior ballistics that we are
seeking.

3. RESULT OF PAST RESEARCH. The following results are concluded as:

1. The principal equation of exterior ballistics is derived with the
trajectory slope as the independent variable.

2. The closed form solution for the horizontal component of trajec-
tory velocity is determined for the case of exterior ballistics with
velocity square damping.

3. The nondimensional range is obtained in terms of an end slope
function and a range drag function.

4. Variations of the nondimensional range are expressed as varia-
tions of launch velocity.

5. Variations of the range drag function are in terms of the varia-
tions of the range drag integral.
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6. The range drag integral has parameters in the integrand as well
as the upper and lower limits. The variations of the integral are found.

7. The partial derivatives of the range drag integrand are eval-
uated.

8. The variational equation for the range is in terms of elements
involving three integrals as coefficients of three variational parameters.

9. The variational parameters are that of launch velocity, the
launch elevation angle, and the impact elevation angle.

10. The average of the end slopes is equal to the terrain slope
times the range drag function minus the elevation drag function.

11. Variations of the nondimensional elevation are expressed as
variations of the end slopes and the variations of the drag function.

12. The variational equations for the elevation are determined
similar to that for the range.

13. Eliminating the variations of impact slope, 6q , from the set
of two variational equations gives the ratio of the coehicients of
6vo/v O and 6qo/(qo-qi).

14. The sensttivity 680/(6v0/v ) may be obtained by dividing this
ratio 6qo/(6vo/vo) by the quantity 1+qo').

Rowever, numerical calculation of this problem was not carried in that
paper (ref. 2).

4. DYNAMICAL EQUATIONS FOR TRAJECTORIES. After several transfor-
mations as given in the paper (ref. 2) and summarized in Appendix A, the
dynamical equations are simplified as

du u s (l+qZ)I/2dq (1)q
u2dxin dq (2)

dy -- qdq (3)
g

In the above equation the independent variable q is the projectile slope
which is related to 6 as

q - tan 8 (4)

and the dependent variable u is related to v and 8 as

u - v cos (5)
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.4

where g w the acceleration due to gravity
c - the drag coeficient of the projectile
v the velocity of the projectile
e - the path inclination (elevation angle)
x - the horizontal distance of the projectile
y - the altitude or vertical distance of the projectile.

The solution for horizontal component of velocity u can be obtained by
integrating Eq. (1) to give

A~~~~ [ p(q)- oql2 .-L {l-u°2 i[P - P°(q 0 )} (6)

where p(q) - q(l+q2) 1/2 + ln[q + (1+q2)1/2] (7)

p (qo) - q (l+q 2)1/2 + In[q + (1+q 2)1/2] . (8)

u1 - 2 2 sec 2 - Vo2(l+q2) -1  (9)

and
qo W tan 00 (9a)

Finally, Eq. (6) takes the form

u 2 M v2 {1 + -1(q'q,v°1 'c/g) (10)

l+qo1 1 - H(q,qVo Z,C/g)

where
H(qsqovo 2,c/g) - v.412 [p(q) - po(qo)] (11)

.4 5. SOLUTION FOR NONDIMNSIOXAL RANGE. In determining the range x
for the trajectory the closed form solution of u' in Eq. (10) can be
substituted into Eq. (2) to obtain the solution in integral form as

"I - - V 0
22) [(qi-qo) + f q:l H(qqo.vo 2 ,C/g) dq (12)

g(1+q q0 1K-

where xi - range at impact point
so - range at initial point

and qj - projectile slope at impact point.
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To non-dimensionalize the range, Eq* (12) is divided by the factor

X(x1.x0 .v )/A(qi ,q,.) - G x(q1 ,qo'voc/g) (13)

where the nondimensional range is

X(x I -,.v0) -(x 1-x0)g/vot  (14)

the slope function is

A(q09qq) - qo-qi (15)

and the range drag function due to air resistance Is

G~ (qL~ q0 v 2,'c/g) - 1 - 1 f Hqo#O2s/)dq (16)

6. VARIATION OF THE NONDIMENSIONAL RANGE AND THE SLOPE FUNCTION.
In order to obtain a first round hit of the target one of the conditions
is that the variation of the range should be zero, i.e., from Eq. (14)

8(x 1 -x 0 ) - 0 *(17)

We take the perturbation for the nondimensional range from Eq. (14)

as

SX _ (xi-x3 ) -26v 0

'I- - 0  (18)

The variation of the slope function A in Eq. (15) becomes

q 0-q I q 0 -q1  -14q 02  (9

Next taingthevariation of Eq. (13) and using the expressions givenin Eq. (18) and (19) we have



! 51 SA GCx
a-t "6", (20)

or

6Gx  26vo + q1  8q0  2qo6qo

_L _ _(21)
ex - o qo-qi qo-q1  1+ qo 02

This gives the variation of the range 8Gx in terms of the variations of
the initial velocity 8vo,and the variations of the initial slope 8q0 and
that of the impact slope 6qi.

7. THE SOLUTION FOR ELEVATION. The differential equation for ele-
vation was given in Eq. (3) and the solution for u is in Eq. (10).

Substituting Eq. (10) into Eq. (3) gives

902 l H(qqvo c/g)]q
dy - 2(l.+ ) o o ]qdq . (22)

g(l+qo2

Integrating the above one obtains
o va [qi 2-q0o2 +q i  H

__-_o " . f.

* g(l+q02) 2 q 0 1-H'(3Rearranging yields the relationship betveen the range Y, the end slope
function A, and the elevation drag function Gy.

Y(y1 ,yovo)/A(qi,qo) -1 2 qi + Gy(q 1,qovo
2,c/g) (24)

where the nondimensional elevation is
g(Yi-Yo)

Y(yiYoVo) y (25)02

A is given in Eq. (15), and the elevation drag function is

G (qpq0 v1 ,g qH(qoqo*V0
2,c/g)dq

q1qo 1-H
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8. TERRAIN SLOPE FROM LAUNCH POINT TO TARGET POINT. If Eq. (25)

is divided by Eq. (14) w. h the aid of Eqs. (16) and (26), one obtains

Ylyo A (1/2)(qo+q1 ) + G(7
xi-xo  Gx  (7

where m is the terrain slope from launch point to target point, a constant

*parameter. Therefore,

(12)(qo-qt) + Gy mG x  (28)

We use Eq. (27) to find the variational equation for the elevation.
Taking the variation of Eq. (28) for any given m, we have

(1/2)(Sq0 +
6q i) + 6Gy - M 6Gx - 0 (29)

It is noted that 6Gy and 6G. are related in Eq. (29). with also the varia-
tions 8q, and 6 qi.

9. VARIATION OF THE RANGE AND ELEVATION DRAG FUNCTIONS. Work was
performed on evaluation of the drag function in the previous paper (ref. 2)
which is summarized in Appendix B. This gives the respectful variations
of the range and elevation drag functions as

6G - 26V0  6qj (30)6Gx" v o + ~ " qo-qt 0 a qo-qjl (0

26v o  6qi 6qo
wee6Y bVv": + oq + bo qqi(31)

Swhere i 112] (32)av- [- 13-7 , ( 2

at Hi Iai = [- _ qo-qt 11

a -~2q 0  +i + c o2dpo (4
j 2q 112 (-0 q) o02] *

1+qo q~qi91-o2 dqo

S[- 1 2 ] (35)

qj -qi 12

b qH _ 1 , (36)1-Hi qo-qtL

andbo 2q0 d 102] (37)
14qo2 + qo-q J 14qo2 dq 0
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In turn, the integral I2., T12 and 102, and other terms are given
as follow.19 2

oll(qoq 1 ) I fq  H(qq' '-- 0cg) dq , (38)
q o 1

1 2 (q0 ,q)- q 1  _2 dq , (39)q (1 -H) 2
q0

02 j qi dq , (40)
q (-H)

Hi - H(q-qi) (41)
and dp0  1/2

- 2(1+qo ) 2(42)

Moreover, the integral J11, 12' and J021 and other terms are given as
follows.

ill qi qH(qqovo0 ,c/g)/(1H) dq , (43)q0

-12 _-fqi qH/(l-H)2 dq , (44)

qo

J02 J qi q/(l-H)' dq , (45)

and qo

Ga- 1 1 (46)

10. SOLUTION FOR SENSITIVITY COEFFICIENT. It is noted that both Eq.
(21) and Eq. (30) give the variation 6GX in terms of variations 6v0 , 

6qi,
and 8q and the equations are independent of each other. Rewriting these
equations as:

8G - [ -+ q-L - + 2-- (47)
v0  qo-qi qo-qi l+q0

2, 8q qo
6G av- + aI  - + (48)G " av v O  i qqo-4 8
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Subtracting Eq. (48) from Eq. (47) and then dividing by Gx gives
±0 W [-1 - a 26v°+ [ - &I 8q2 + [ -- + 2] qo (49)- -Vo qoZ q Gz + o 49

It Is also noted that Eq. (31) expresses the variation 6Gy in terms of
variations 6Vo, 6qj , and 8qD, and Eq. (29) relates 6Gy and 6G. with the sameset of variations. These are rewritten as

6G - b v 26v0 + b  Sq + bo 6qo (50)y v v +b-1 .+ -
0o  qo-q:L qo-qj

6q! -6q o + 26G - 26G (51)

By substituting Eqs. (48) and (50) into (51) we have

6qi  -6q + 2[a 26vo + a 61 + a qo

0 VO qji 76-qi

_2[b v 25Vo + bi + bo qo (52)
vo  qo-qi qo-q:L

or
S(-21av+2bv) 26v° -2mai+2bi 6qi -2ma 0+2bo 6qo

0) ) = (53)qo-q' T- 7 (1+ qo-qj q 0 -qI

Equations (49) and (53) are in terms of the variations 6vo. 6qi, and 6qo.
Sensitivity coefficients are ratio of 6qo and 6vo, thus 6q1 can be elim-
inated by combining these two equations:

0 UZ: -2=av+2bv ( a ai -2uai+2b) 26v
q-qv GX 1  qoq v

-2=ao+2bo ai[ai + oq ) (l -C

a0  -2q.(q,-qi) -2ma±+2b±) ] (5o

(1 + l%-(o qo-qi qo-q1
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If we define the ratio S* as

-S q°/(q°0 q-) (55)

Then from Eq. (54) this ratio is

-2=av+2bv ai  (2 Am -2mai+2bi
(* "-)qo-qi' I) (1 -4 l 1 + qoqi )

-2mao+2bo ai ( o 2qo(qo-qi)) -2mai+2bi
1+ qo-qi14'q, 

oa oo-q i

(56)

The sensitivity equation is defined as
. q°/ (4,qo 2)I

s W- d v/V °  (57)

which give the relationship
qo5qis* (58)

l~0

11. ITERATION OF SOLUTIONS. The terrain slope a is usually pro-
vided before the computation. Equation (27) shows that this terrain
slope is in terms of the range drag function Gx in Eq. (16) and the ele-
vation drag function Gy in Eq. (26). In turn, these drag functions are
expressed in terms of the projectile starting slope qo and its impact
slope qi" Computationally the solution of m for given q. and qi is a
straight forward substitution procedure using Eqs. (27), (16), and (26).
However, since the terrain slope m is known in advance physically and the
impact slope qi is not, we compute instead the impact slope qi for a
given starting slope qo in Eq. (27). Rewriting this equation we have

qi " q0 + 2 fqi qR(qqovo2,c/g)dq

q°'q 1  q 01

+ = 2m q1 H(q'qovo 2 'C/g)dq

q
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One can guess an initial value for qj on the right side of the above
equation and perform the integration. The value for q1 on the left side
can be used as the initial value for qi on the right side for the second
trial. This iteration procedure continues until the value of qj con-
verges to a numerical solution as its limit.

Equation (59) may be expressed as
' 2 2m.

qi " qo + 2 11 + 2z - - 1 (60)

where Ill and Jll are given in Eqs. (38) and (43). These integrals will
be evaluated in the next section.

12. EVALUATION OF INTEGRALS. If the drag coefficient cvo2/g is small
compared to (1+q ') the denominator terms (1-H) and (1-H)2 in Eqs. (38) -
(40) and (43) - 145) may be neglected. One obtains from the above equa-
tions the following

11 11 J. Hdq (61)Z(62

102 q"to2 : qi - qo0 (62)

1J1l ; J12 - fqi qldq (63)

j " (q -q 2) (64)
02 2 i o

Equation (11) for H may be rewritten as

H - K [(q (65)
;021qo q)-P 0

where K - CV0
2/g (66)

and p(q) is given in Eq. (7). Then the integrals Ill and 112 are

Iii 1 12 - KM (67)

where

M - [Pqmq - P + (q°-ql)p°(q°)] (68)

l+qo q- 0
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and
P -f p (q) dq

.1 (1+q 1) 3/2 + qtnlq + (1+q2)1/21 (14q2)1/2 (69)
3

Similarly the integrals J11 and J2are

1 1 J1 2 'KN (0

whee 2 Qq,- Qq 'I -(q '-q')P 0(q0)] (71)
l+q0  ~ - 0  2 o0 .

and
Q -f qp(q)dq

.1 i~2 3 / 2  _ 3 q(l+q2)1t 2 + 1 q2+ 1)nq+ (1q)* (72)

In the last section the iteration equation (59) for the solution for
qj now becomes

qi - qo +. 2(mG x-G ) (73)

where
Gx - (q0-qj)

1 IO1H (74)

and
G - (q0-qj)-l KN (75)

We are now able to compute qi if the quantities m and q.are given.

The coefficients used in the variation of range and elevation drag9 functions in Eqs. (32) - (37) give

av (q "'oqi 10 (76)

a - K{-(p(qi) -p 0 (q0 )] (q0-qi)-
1 M) (77)

a.2q 0  q-o)] dpo
a0 - ,7-[ + ( q)]M- (q0-qi)) (78)

l~qo 0dqO
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bv - - (qq-qi)- 1 KN (79)

b - K{-qi[p(qi) - po(qo)] - (qo-qi)- l N) (80)

and 2qo 2 ) )Po.

bo  K{[ + (qo-qt)']N - 0 1 - (1

With qo and qj known, we are able to compute the coefficients of three a's
and three b's as given in the above equations. It is now ready to sub-
stitute all the coefficients into Eq. (56) to compute S*. By Eq. (58),
in turn, one obtains S, the sensitivity we are seeking.

13. DETERMINATION OF THE EXTREMAL VALUE OF THE DAMPING COEFFICIENT.
The assumption that the denominator terms (1-H) may be dropped in eval-
uating the integrals depends on

H << i (82)

From Eq. (65) this is equivalent to

E(q) -K{ i-- 0 2[p(q) - po(qo)]) << 1 (83)

where p(q) - {q(l+q 2)1/2 + n[q + (1+q2)1/21} (84)

It is noted that

H(q0 ) -0 at q - q0  (85)

The extremal value of H(q) can be evaluated at q - qi

I; .1 <Hlextremal.n IH(qi)l - K 2 [p(qi ) - po(qo) << 1 (86)

The above is conservative in that we use the largest value of IHI for
determining the range spread of K. For example if qo " 1 and qi " -1,
then

1 2 p (q) - (1.414+tn 2.414)/2 - 1.147 (87)

l+qo

1 p(qi) - (-1.414+tn 0.414)/2 - -1.147 (88)
l+qo
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then Y1I-1.147 - 1.1471 << 1 (89)

or K << 0.436 (90)

and if qo - r, and q. -r. then

-. 1-a. po(q o) - [(1.732)(2) + In 3.732]/4 - 1.195 (91)

I
ap(qi) - [(-1.732)(2) + In 0.268]/4 - -1.195 (92)

then
K1-1.195 - 1.1951 << 1 (93)

K << 0.418 (94)

The maximum of K we chose in this paper is

max(cvo2/0 ) = max K 0.20 (95)

which satisfies the above requirements for the approximation used in
evaluating the integrals.

14. COMPUTATION PROCEDURE. The computation procedure consists of
two parts, the iteration procedure for the impact slope qj and the sensi-
tivity and range computation after obtaining qi.

(1) Iteration Procedure - By giving the launch slope qo one can com-
pute such quantities as po(qo) from Eq. (7), Pq-qo from Eq. (69) and
Qq-qo from Eq. (72). The iteration procedure starts by assuming an
initial impact slope qi. Then we can obtain Pqmqi and Qq-qj from Eqs.
(69) and (72), respectively. In addition, we can compute M and N from
Eqs. (68) and (71), respectively. By assuming the value of K (i.e.,
cv n/g) in Eq. (66) the integrals I1 and Jl are calculated from Eqs.
(69) and (70). respectively. With tiese integrals one can find a new
value for the impact slope qi by using Eq. (60). This iteration proce-
dure continues until the value of qi converges to a numerical solution as
its limit.

(2) Sensitivity and Range Computation - With the iterated solution of
the impact slope qi known, one can proceed to find the sensitivity coeffi-
cients and the range. We start to find the range drag function G. and the
elevation drag function G from Eqs. (74) and (75), respectively. Next the
coefficients av, ai, so, y, bi, and b. can be evaluated by Eqs. (76) - (81).
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Substituting these functions and coefficients into Eq. (56) we can get S*v
thus the sensitivity coefficient S can be obtained readily from Eq. (58).

The range X can also be computed by combining Eqs. (13). (15). and
(74).

15. NUMERICAL SOLUTIONS. We are using the nondimensional damping
coefficient K - cv /g - 0.2 for illustration purpose. The terrain
slopes are assumed0 to be m - 0 and m - 0.2679 vhich is corresponding to a
terrain angle of 0 and 15' respectively. The launch angle e0 are varied
as follows:

for m - 0, 7.5' < e0- 82.5' at intervals of 7.5'

for tan -l m - 15*, 22.5 <8 75" at intervals of 7.5"

The results are shown in Tables 1 and 2, and plotted in Figures 2-6. Fig-
ure 2 gives the iterated impact angles for various launch angles. The
effect of K to the range is fairly large as shown in Figures 3 and 4. How-
ever, the effect of the nondimensional drag coefficient K to the sensitiv-
ity coefficient is not very large except near the critical sensitivity
which magnitude is unbounded as shown in Figures 5 and 6.

16. CONCLUSION. This paper is the third of a sequence. The find-

ings are summarized as follows.

From the first paper (ref. 1) we have:

(1) The error increments in hitting a target are derived and set to
zero for a bull's eye landing.

(2) The sensitivity coefficient is defined as the ratio of incre-
ments of the initial elevation angle to the increments of the natural
logarithm of the velocity.

(3) Without air resistance or damping the maximum range is found to
be located at an optimal initial elevation angle, which is half of the sum
of 90* and the terrain angle.

(4) Without damping the sensitivity coefficients become infinite at
maximum range and zero at minimum range of zero.

(5) The sensitivity coefficient is positive for high trajectories
(above A5' initial elevation angle) and negative for low trajectories
(below 45' initial elevation angle).
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(6) Due to uncertainty of muzzle velocity deviation a gun may be
designed by matching the interior ballistics to the exterior ballistics.
This is to give automatically and instantly a proportional deviation of
its initial elevation angle when the shell leaves the muzzle during firing
for the first round.

The second paper (ref. 2) investigated the problem when the principal
equation of exterior ballistics has a drag term which is proportional to
the square of velocity. The paper is to find analytically the sensitivity
coefficient. A sequence of nonlinear transformation was used before the
sensitivity problem can be studied. The variation of various parameters
is investigated, including the variation under an integral sign.

The present paper continues the work of the second and converts it
into a different analytical form that is suitable for numerical computa-
tion. The solution for sensitivity coefficients is condensed into a
single formula with the terms readily computable from a set of parameters.
An iteration procedure is used in the computation. Some integrals are
approximated in order to obtain their analytical solution forms.

The effect of velocity square damping to the range can be large,
especially at the maximum range. However, the effect of velocity square
damping to the sensitivity coefficient is usually small. except near the
maximum range.

I
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TABLE 1. RANGE AD SENSITIVITY COEFFICIENTS FOR FLAT TERRAIN

For a 0 cvoz
so q0 c Oi(degree) qi x s

7.5e 0.13165 0 - 7.5000 -0.131652 0.258819 -0.267949
0.20 - 7.7808 -0.136641 0.249773 -0.268020

15.00 0.26794 0 -15.0000 -0.267949 0.500000 -0.577350
0.20 -16.1583 -0.289738 0.465538 -0.578836

22.50 0.41421 0 -22.5000 -0.414213 0.707106 -1.000000
0.20 -25.0595 -0.467574 0.636169 -1.011472

30.0' 0.57735 0 -30.0000 -0.577350 0.866025 -1.732050
0.20 -34.2094 -0.679841 0.755507 -1.804402

37.5* 0.76732 0 -37.5000 -0.767326 0.965925 -3.732050
0.20 -43.1708 -0.938106 0.821550 -4.422821

45.0* 1.00000 0 -45.0000 -1.000000 1.000000 f
0.20 -51.4995 -1.257153 0.835103 14.3160

52.50 1.30322 0 -52.5000 -1.303225 0.965925 3.732050
0.20 -58.9394 -1.660305 0.798363 2.645294

60.0" 1.73205 0 -60.0000 -1.732105 0.866025 1.732050
0.20 -65.5374 -2.198108 0.714006 1.342668

67.5 2.41421 0 -67.5000 -2.414213 0.707106 1.000000
0.10 -69.0956 -2.618147 0.647751 0.915074
0.20 -71.6039 -3.006806 0.585294 0.796916

75.0' 3.73205 0 -75.0000 -3.732050 0.500000 0.577350
0.10 -76.0085 -4.013342 0.459463 0.529802
0.20 -77.5372 -4.524636 0.417197 0.465626

82.50 7.59575 0 -82.5000 -7.595754 0.258819 0.267949
0.10 -82.9614 -8.099269 0.238697 0.245899
0.20 -83.6382 -8.969194 0.217891 0.217213
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TABLE 2. RANGE AND SENSITIVITY COEFFICIENTS FOR 15° TERRAIN

For a - + 0.2679 cv0
a

o qo v 8j(degree) qi X 8

22.50 0.41421 0 6.932362 0.121586 0.249772 -0.278596
0.10 6.783131 0.118944 0.245353 -0.278737
0.20 6.619309 0.116045 0.240893 -0.278891

30.0' 0.57735 0 -2.379286 -0.041550 0.464175 -0.634112
0.10 -3.002055 -0.052443 0.448368 -0.636174
0.20 -3.751089 -0.065562 0.432262 -0.638617

37.50 0.76732 0 -13.03583 -0.231526 0.628688 -1.214643
0.10 -14.38786 -0.256530 0.598311 -1.230168
0.20 -16.14129 -0.289416 0.567092 -1.250663

45.0* 1.00000 0 -24.90070 -0.464200 0.732100 -2.732736
0.10 -26.98236 -0.509137 0.688258 -2.877936
0.20 -29.80982 -0.572933 0.642910 -3.107193

52.59 1.30322 0 -37.50354 -0.767425 0.767364
0.10 -39.96784 -0.838143 0.714885 32.535621
0.20 -43.37056 -0.944680 0.660410 13.127275

60.0* 1.73205 0 -50.10622 -1.196250 0.732075 2.731708
0.10 -52.42571 -1.299732 0.678076 2.405832
0.20 -55.62687 -1.461933 0.622002 2.031230

67.5' 2.41421 0 -61.97076 -1.878413 0.628640 1.214358
0.10 -63.73921 -2.026837 0.580688 1.105513
0.20 -66.17359 -2.264476 0.531007 0.968816

75.0' 3.73205 0 -72.62684 -3.196250 0.464108 0.633962
0.10 -73.71086 -3.422142 0.428564 0.581436
0.20 -75.20812 -3.787022 0.391874 0.514330

82.5' 7.59575 0 -81.93802 -7.059954 0.249690 0.278489
0.10 -82.41359 -7.508239 0.230773 0.255652
0.20 -83.07899 -8.238227 0.211307 0.226622
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APPENDIX A

DYNAMICAL EQUATIONS FOR TRAJECTORIES AND VARIABLE TRANSFORMATIOWS.
For a cons tant mass travelling In a vertical plane with no lift and applied
thrust, but having drag and velocity vectors contained in the plane of
symetry an shown in Figure 1, the dynamical equations of motion are (ref.
1):

dx.. v coo 8-0 (Al)
dt

ft -v sine0 - 0 (A2)
dt

de
dt

d2x D coso (A4)
dt2 M

It Is noticed that deviations due to anomalies in the azimuth direction
are not considered here.

By differentiating Eq. (Al) with respect to t one obtains

A- (v cooe) (AS)
dt' dt

Substituting into Eq. (M) we have

d(v coo 6)- D cos 0 (M6)

Solving for dO/dt in Eq. (M3) one obtains

dO .- a icos 1 (A7)
dt

Equation (A7) indicates that the differential equations can be transformed
from the time domain in t to the angle domain in 0. Equations (M6), (Al),
and WA) are divided by Eq. WA) in achieving this transformation as

d(v cosn 9) _ D (AM)
dO mg
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d- -

ds

1: tat e (AlO)
dO ."

Equation (AS) is called the principal equation of exterior ballistics
(ref. 2). It can be integrated If the drag D is a known function of
velocity v.

The head wind drag is a velocity square damping term given as

D - mcv 2  (All)

where

c - c%(t d2) (0/2) U1~2)

cw - the dimensionless resistant coefficient

d - the diameter of projectile

and p - the air density.

Thus the principal equation of exterior ballistics (Eq. (AS)) becomes

d(v cos) - 3  (3

68 "
A further transformation of the dependent variable is necessary by letting

u- cos e (A14)

where u is the horizontal component of the projectile velocity. Then the
dynamical Eqs. (A13). (A). and (AlO) become

di' ,- u'sec' 6 (A15)dx g

d- -2 see2 e (A16)

d-m 1: sect 8 tan 0 (A17)
dO a

To simpIfy further the form of the dynamical equations another trans-
formation of the independent variable is made by letting

A - sec 0 - 1+q2  (A18)
60
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APPENDIX B

VARIATION OF THE DRAG FUNCTIONS. As given by Eq. (54) in the previous

paper (ref. 2) the variation of the range drag function Gx is

.8 [ 112 28v0
qo-q i vo

+ q-qiL Ill S qi

+ 4 qmq" qo-qi I q-qi

+ 2qo112 + +S vo2 dpo0._2J __ (Sl)1+qo-1 qoa-qi 9 1+qo0 d o I q-qi

It is noted that the difference of the end slope is not zero, i.e.,
qo-qj 0.0. Therefore, the problem does not become singular. We have

expressed the variation 6Gx in terms of the variational parameters.

As given by Eq. (77) in the previous paper (ref. 2) the variation of
the elevation drag function 8G. is

8G - ,2,] 26Vo

y 0 _ V0

S qo-qi +qo dp- o qo-qi
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Figure 2. Impact Angle v.Launch Angle for Different

Target Slopes and Damping Coefficients.
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Figure 3. Nondlmensional Range vs. Launch Angle for
Horizontal Target and Different Damping
Coefficients.
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Figure 4. Nondimensional Range vs. Launch Angle for
Upgrade Targets and Different Damping Coefficients.
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Figure 6. Sensitivity Coefficient vs. Launch Angle for

Upgrade Targets and Different Damping Coefficients.
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DESIGN OF SUPERCRITICAL SWEPT WINGS

Paul Garabedian and Geoffrey McFadden
Courant Institute of Mathematical Sciences, New York University

New York, N. Y. 10012

ABSTRACT. Two-dimensional codes for the design and analysis of transonic
airfoils are now in common use. Codes have been developed to analyze the tran-
sonic flow past a swept wing in three-dimensional space. In this paper a compu-
tational method to design supercritical swept wings will be discussed that is
based on a well posed free boundary problem for the velocity potential.

1. THE ROLE OF COMPUTATIONAL FLUID DYNAMICS. There has been a great deal
of interest lately in problems of transonic aerodynamics related to shockless air-
foils and supercritical wings. Computational fluid dynamics has turned out to be
a very successful tool in this field. For two-dimensional flow, computer codes
to design and analyze supercritical wing sections are now in common use. But for
swept wings in three-dimensional flow many mathematically challenging problems
remain open. It is to some of these that we shall address ourselves here.

The transonic flow past a swept wing can be described realistically by a
velocity potential o. Weak shock waves are represented by adding to the partial
differential equation for 4 artificial viscosity terms that may or may not be in
conservation form. Iterative schemes to solve corresponding sets of difference
equations numerically are obtained by adding further terms that involve differenti-
ation with respect to an artificial time parameter t. This leads to a partial
differential equation for 4 of the form

(c2 6 jk- k j xk) x = h min (-M 2 0) 1 I~ x tk X xxk + I o Cxjt +  t

where c is the speed of sound determined by Bernoulli's law, M = IVoI/c is the
Mach number, h is a small positive number related to mesh size,and a. and B are
coefficients specifying the iterative scheme. The normal derivative of 0 is put
equal to zero on the surface of the wing, and the vortex sheet behind is modeled
by a linearized boundary condition.

The boundary value problem we have described has been used to develop

codes for the calculation of transonic flow past an oblique wing or a swept wing
[3,6]. For the implementation, parabolic coordinates x and y are introduced in
planes perpendicular to the wing. At each span station z this is accomplished
so as to achieve good resolution at the leading and trailing edges. Through a
substitution of the form

Y = y - f(xz)

a further transformation is made to a rectangular domain
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-1 < X < 1, 0 < Y < 1, 0 < Z < 1

that is convenient for the computation. Thus the surface of the wing y = f(x,z)
is mapped onto a region of the plane Y 0, with X varying primarily in the direc-
tion of the flow and Z indicating the span station. This formulation of the
problem is well adapted to questions of design that require changes in the func-
tion f.

Meaningful runs of the swept wing code can be made on a mesh of 96x12x16
points using only 100 time cycles. Such calculations are relatively easy on a
computer of the capacity of the CDC 6600. However, the lift is slow to converge
because in three dimensions it is hard to correlate circulation with an asymptotic
expansion for * at infinity. Thus it becomes desirable to seek a version of the
code that would run efficiently on modern parallel computers like the STAR or CRAY.
The most successful attack on this problem so far has been through vectorization of
the calculation of the coefficients in the partial differential equation for *,
which is where the bulk of the computing is done (8]. This can be implemented
over either lines or planes in the space of the coordinates X, Y and Z.

The drag has not been calculated very accurately in three dimensions, especial-
ly when conservation form of the equation for the velocity potential 0 has been
dropped in order to sina.late boundary layer effects. We have under consideration
an improved algorithm to compute the wave drag using equations for the conserva-
tion of momentum. Moreover, examination of computed pressure distributions does
seem to give a physically significant measure of the performance of supercritical
wings that can be relied on in practice.

A more ambitious undertaking is the design of swept wings with prescribed
pressure distributions. 4t transonic speeds it is onerous to ask for shockless
flow in three dimensions (9]. However, we shall discuss in the next section a
method of artificial viscosity that does seem to offer some prospect of improving
the design and reducing the drag of swept wings in various three-dimensional
configurations. The scheme provides an alternative to outright minimization of
the drag 15]. It is based on a free boundary problem in which the speed is
prescribed continuously over a portion of the wing. The free boundary problem
seems to be well posed provided that shocks satisfying a suitable entropy inequal-
ity are allowed to appear in the interior of the flow.

2. A TRANSONIC FREE BOUNDARY PROBLEM. Two-dimensional codes have been
written to design an airfoil with a given pressure distribution. For transonic
flow we have at our disposal two possible approaches to this problem. One of
them is to introduce complex characteristic coordinates in the hodograph plane
so as to obtain a shockless airfoil whose pressure distribution only deviates
from the prescribed data in the supersonic zone [2]. The other is to add artifi-
cial viscosity in the physical plan.-. so that shocks are smeared out while the
data are fitted perfectly over the whole profile [7].

The hodograph method has the advantage that it determines supercritical
wing sections with low levels of wave drag automatically. The method of artifi-
cial viscosity is relatively easy to implement as a robust code, but it allows
shocks with significant wave drag to remain inside the flo'i even when the pressure
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at the profile is smooth. To apply the design codes one must exercise some skill
in choosing the pressure distribution that is assigned. The theory of shockless
airfoils can be helpful in making an initial choice (cf. Figs. 1 and 2). To
eliminate shocks it is desirable to use a pressure distribution that is peaky
near the leading edge of the wing as well as smooth at the rear of the supersonic
zone.

Because the hodograph method fails in three-dimensional space, we rely on
artificial viscosity to develop a code for the design of supercritical swept wings.
Our work is based on the references cited earlier [3,6,8].

To avoid questions of closure and other complications with the geometry, we
formulate a free boundary problem in which the pressure, or, rather, the speed, is
assigned over only a limited part of the surface of the wing. Let y = f(x,z)
be the equation of that surface, let 0 stand for the velocity potential of a
corresponding flow with given speed at infinity, let q = IVOI, let y = f (x,z)
represent a surface that is supposed to lie inside the eventual wing, ang let
%(xz) specify a prescribed distribution of speed. For the design problem we
ask that f(x,z) >_ f (x,z) everywhere, assuming that y > f(x,z) defines the
region of flow. In addition, we ask that the free boundary condition

Q(f,fxfz) = qO(x,z) 2- q(x,z) 2= 0

be fulfilled wherever the strict form f(x,z) > f 0(x,z) of the inequality holds.
It will be seen that these requirements define a wing on which the prescribed
values q0 of the speed are taken on only at points where they are sufficiently
big. The result is a patch of wing surface on which unwanted shocks may be
smoothed out.

The free boundary problem that we have described can be solved numerically
by an iterative scheme generalizing one that has been applied successfully to
analogous questions arising in computational magnetohydrodynamics [1]. Let both

and f depend on the artificial time parameter t, and suppose that 4 satisfies
the partial differential equation formulated above for transonic flow. We allow
the surface y = f(x,z,t) to vary with t according to the following rules. For all
t we require that f > f . However, when f > f we put

- 0

a l (Oxfxt + Ozfzt ) + ft = Q + a 2 (Qf + + Qf QZ)

with the coefficients a. chosen to make the scheme converge. This partial differ-

ential equation for f i approximated by finite difference equations determining
the free surface in the limit as t 4 -. The extra terms on the right are
suggested by the Lax-Wendroff scheme, whereas those on the left are motivated by

linearized flow theory (cf. [4]). To solve the difference equations for f we
march in a direction opposed to the flow.

A preliminary version of a code that implements our design concept has been
written. Computational experience with convergence of the method is encouraging.
More specifically, the addition of the term in f facilitates convergence
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when the flow is transonic. Our success is perhaps surprising in view of the
fact that flux is stationary at sonic speed. The rate of convergence for the new
design code becomes even faster than that for older swept wing codes because the
difficulty with slow convergence of the lift can be circumvented by the simple
device of fixing the section lift coefficient at each span station while varying
the corresponding angles of attack and twist.

We have yet to develop the code into an engineering tool of practical signifi-
cance. It can be applied, in a fashion suggested by wind tunnel techniques, to add
material to an underlying wing structure so as to obtain supercritical flow with
only weak shocks of negligible wave drag. As a first example we have attempted to
suppress the shocks at the root section of a swept wing that was constructed from
shockless airfoils. Figs. 3 and 4 show the pressure distribution on the upper
and lower surfaces of the wing before and after application of the design code.
The reduction in drag is disappointing, but this may be attributed to poor accuracy.
Engine nacelles or a possible fuselage can be modeled in the computation by impos-
ing a linearized boundary condition at the wall.
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- INPUT

-1 .2 CP ++++ OUTPUT

-. 4

.4

1.21

------------

M=.745 CL= .441 DX= .013 OY= .029 T/C=.135

Fig. 1. modification of the NPACA 0012 by the hodograph method.
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C P

4~ 1.2

VISCOUS DESIGN MwN=160w30 NCY= 159 EPS1=O.000

-ANALYSIS M=.751 ALP= 2.00 CL= .434 CO=.0038

A INPUT CP T/C= .12'4 00= -85E-03 DPHI= .716E-04

Fig. 2. Modification of the NACA 0012 using artificial viscosity.
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

MACH .800 SWEEP 30.00 ALPHA 1.800
L/D 43.99 CL .5448 CD .0124

Fig. 3. Pressure on a swept wing showing a shock near the wall.
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

MACH .800 SWEEP 30.00 ALPHA 1.800
L/D '44-55 CL .5379 CD .0121

Fig. 4. Snoothed pressure on the swept wing after design.

476 - _ _ _ _ _ _ _



LIST OF REGISTERED ATTENDEES

Essam H. Atta Michael Crandell
Ames Research Center MRC, University of Wisconsin
Moffett Field, CA 94035 Madison, WI 53706

J. M. Ball William R. Van Dalsem
University of California-Berkeley Ames Research Center
Berkeley, CA 94720 Moffett Field, CA 94035

Richard Beam Richard E. Dickson
Ames Research Center Army Missile Command
Moffett Field, CA 94035 Huntsville, AL 35803

Paul T. Boggs F. Carroll Dougherty
US Army Research Office Ames Research Center
Research Triangle Park, NC 27709 Moffett Field, CA 94035

James R. Brasseur Paul R. Garabedian
Ames Research Center Courant Institute, N.Y.U.
Moffett Field, CA 94035 New York, NY 10012

Frank Caradonna James Glimm
Ames Research Center Rockefeller University
Moffett Field, CA 94035 New York, NY 10021

Aivars Celmins Gene H. Golub
Ballistic Research Laboratory Stanford University
Aberdeen Proving Ground, MD 21005 Stanford, CA 94305

*1

Jagdlsh Chandra Peter M. Goorjian
US Army Research Office Ames Research Center
Research Triangle Park, NC 27709 Moffett Field, CA 94035

Peter C. T. Chen Robert M. Hackett
Watervliet Arsenal US Army Missile Command
Watervliet, NY 12189 Redstone Arsenal, AL 35809

Leslie Chow Kristin A. Hessenlus
Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

477

II



Raymond M. Hicks Lyndell S. King
Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

Satoru I. Hlrayama Clarence W. Kitchens, Jr.
Ames Research Center Ballistic Research Laboratory
Moffett Field, CA 94035 Aberdeen Proving Ground, MD 2100

Morton A. Hlrschberg Allen L. Kuhl
Ballistic Research Laboratory R&D Associates
Aberdeen Proving Ground, MD 21005 Marina Del Ray, CA 90291

Dewey H. Hodges J. 0. Lambert
Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

Terry L. Hoist Harold Law
Ames Research Center AVRADCOM, HQ
Moffett Field, CA 94035 St. Louis, MO 63166

C. C. Horstman Anthony Leonard
Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

Ching-Mao Hung R. E. Lottero
Ames Research Center Ballistic Research Laboratory
Moffett Field, CA 94035 Aberdeen Proving Ground, MD 2100

Mamorle Inouye Robert MacCormack
Ames Research Cehter Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

James A. Jeske Thomas L. Mann
Ames Research Center Ballistic Research Laboratory
Moffett Field, CA 94035 Aberdeen Proving Ground, MD 210C

Henry E. Jones J. E. Marsden
Ames Research Center University of Callfornia-Berkele
Moffett Field, CA 94035 Berkeley, CA 94720

478



W. James McCrosky Walter A. Relnhardt
Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

Anmeel B. Mehta J. Barkley Rosser
Ames Research Center MRC, University of Wisconsin
Moffett Field, CA 94035 Madison, W1 53706

Joel P. Mendoza Vernon J. Rossow
Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

J. D. Murphy James A. Schmitt
Ames Research Center Ballistic Research Laboratory
Moffett Field, CA 94035 Aberdeen Proving Ground, MD 21005

John A. Nohel Gregory R. Shubin
MRC, University of Wisconsin Naval Surface Weapons Center
Madison, WI 53706 Silver Springs, MD 20910

Larry Olson Irving C. Statler

Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

Seymour V. Parter Michael Steuerwalt
University of Wisconsin Los Alamos Scientific Laboratory
Madison, WI 53706 Los Alamos, NM 87545

Richard H. Petersen Lloyd N. Trefethen
Ames Research Center Stanford University
Moffett Field, CA 94035 Stanford, CA 94305

Victor L. Peterson John R. Vlegas
Ames Research Center Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

George Reddlen Marcel Vinokur
Southern Methodist University Ames Research Center
Dallas, TX 75275 Moffett Field, CA 94035

479

---.. --- 1



zt

Robert F. Warming
Ames Research Center
Moffett Field, CA 94035

Chia Ping Wang
US Army Natick R&D Command
Natick, MA 01760

C. Glenvil Whitacre
Chemical Systems Laboratory
Aberdeen Proving Ground, MD 21010

Carroll 0. Wilde
U. S. Military Academy
West Point, NY 10994

James T. Wong
Ames Research Center
Moffett Field, CA 94035

Julian J. Wu
Watervliet Arsenal
Watervliet, NY 12189

Helen M. C. Yee
Ames Research Center
Moffett Field, CA 94035

Yung H. Yu
Ames Research Center
Moffett Field, CA 94035

480



0 I-AO89 089 
ARMY MATHEMATICS 

STEERING COMMITTEE 

F/6 9/2

AU 
8PROCEEDINGS OF THE 1980 ARMY 

NUMERICAL 
ANALYSIS AND 

COMPUTERS 
C--ETC(U)

PNCLASS IF IED ARO-R0-3 NL

6
CflW



59CURITY CLASSIFICAri

[~~EPO
IREOTNUIABEk

ARC Report SO-

Proceedings of
and Computers

'S. PERFORMING ORaANS.

It. CONTROLLING OFFIC

14. MONITORING AGV.NCY
Army Research C
ArrN: DRXRO-KA
P. 0. Box 122if
Research rriang

DISTRIBUTION STATEI

Approved for pu
report are not
unless so deslg

17. DISTRIBUTION STATES

iIS-PUEMNTARYNO'

Comutersi Confq

1.0 engineering as

136 9. KEY WORD (Conf~..,
t 112 fluid discontir

~2 transonic rotoiRutdiscontinuity
lull computation fol

pred ictor-corri

251~ 114 1. Fourier transft

Schwarz-Chriss
Shoenberg appri
full potential



UNICLASSIFIED
ILCURITY CLASSIFICATION OF THIS PAGE (IWhon Doe Entered)

REPOR DOCMENTTIONPAGEREAD IN~STRUCTIONS
_____ REPORT__________________________PAGE BP.FOPMCOMI'LETIGFORM

IREPORT NUMBER 2,GOVT ACCESSION NO. 31 kECIPIIENT'S CATALOG NUMBER

ARO Report 80-3 A1 'tcq __________

I. ~ ~ ~ - -~ - .'ut, --------- S.5 TYPE Of REPOftT_,&LBAOODCOVERED

Proceedings of the 1980 Army Numerical Analysis fInterim Xechnical report
and Computers Conference

6. PERFORMING ORO. REPORT NUMBER

I. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(s)

I. PERFORMING ORGANIZATION NAME AND ADDRESS SO. PROGRAM ELEMENT. PROJECT. TASK
ARLA & WORK UNIT NUMBERS

It. CONTROLLING OFFICE NAME AND ADDRESS 12. am-VW,..,f 1 r

Army Mathematics Steering Committee on behalf of Augu.S080
the Chief of Research, Development and Acquisitlot N611UUE11R-OF PAGES

14. MONITORING .AGV.NCY NAME & ADDRESS(If diffeet from Cmuuelii Office) IS. SECURITY CLASS. (at tisi report)

Army Research Office
ATTN: DRXRO-MA
P. 0. Box 12211 11a. DECL ASSIFICATION/ DOWNGRADING
Research Triangle Park, NC 27709 SCHEDULE

DISTRIBUTION STATEMENT (of this Repot)

Approved for public release; distribution unlimited. The findings In this
report are not to be construed as an official Department of the Army position,
unless so designated by other authorized documents.

17. DISTRIBUTION STATEMENT (of the abstract ent,,ed in Block V',I. 1dllmdeaS from Report)

IS:pJPPLEMENTARY NOTES

This Is a technical report resulting from the 1979 Army Numerical Analysis and
Computers Conference. It contains papers on computer aided designs and.
engineering as well as papers on numerical analysis.---

19. KEY WORDS (Continue on reverse side it neesary and identify by block nuMb.,)
fluid discontinuities motions of a fiat plate
transonic rotor flows software
discontinuity tracking methods Interior ballistic codes
computation for shocks finite element analysis
predictor-corrector methods breech ring analysis
Fourier transform evaluation over-strained tubes
approximation methods vector computers
root searching algorithm queueing models
Schwarz-Christoffel transformations data bases
Shoenbarg approximations from large to small computers
full potential equation variational methods
bifurcation branches computational schemes
Iterative schemes suppression of shocks on swept

icylr-Stokes a uatios wings

DD JA '7 1473 EDITION OF I NOV 6515I OBSOLETE XCAZFE


